

PROGRAMME QUALITY HANDBOOK 2022-23

FdSc Naval Architecture

Page 1 of 46

Welcome and Introduction

Welcome to (FdSc Naval Architecture) delivered at Kings Road Campus by City College Plymouth

A Naval Architect is a professional engineer who is responsible for the design, construction and repair of ships, boats, other marine vessels and offshore structures, both civil and military, including:

Merchant ships, Passenger/Vehicle Ferries, Warships, Submarines and underwater vehicles, Offshore Drilling Platforms, High Speed Craft, Workboats Yachts etc.

Some of these are among the largest, most complex, and highly valued moveable structures produced by humankind. Without them to provide for the safe and efficient transport and recovery of the world's raw materials and products, modern society as we know it could not exist. This programme will develop a broad knowledge base of Naval Architecture, where applicable students will carry out practical design projects, using proven theory to solve engineering problems and study new technologies and engineering theory, engineering codes and specifications. During the course, guided learning and varied dynamic assessments will provide essential knowledge and understanding that will lead into the final group project, where teams of engineers from different engineering disciplines will work together sharing their knowledge and compete in given challenges. Throughout many of the modules, you will use a range of computer based simulation and industry standard software. Delivery of certain modules will be within specialist workshop/ laboratory areas. Delivery is planned to be flexible to accommodate both our part time and full time students.

This programme has been designed to equip you with the skills and knowledge base required to work in your chosen specialism or other graduate opportunities. It is also a platform from which you can undertake additional vocational and academic qualifications.

This Programme Quality handbook contains important information including: The approved programme specification Module records

Note: The information in this handbook should be read in conjunction with the current edition of:

- Your Programme Institution & University Student Handbook which contains student support based information on issues such as finance and studying at HE
- available at <u>http://hemoodle.cityplym.ac.uk/course/view.php?id=3305</u>
- Your Module, Teaching, Learning and Assessment Guide
- o available at: http://hemoodle.cityplym.ac.uk/course/view.php?id=3597
- Plymouth University's Student Handbook
- available at: <u>https://www.plymouth.ac.uk/your-university/governance/student-handbook</u>

Programme Specification

Final award title	FdSc Naval	Architecture
Level X Intermediate awar	d title(s)	N/A
Level X Intermediate awar	d title(s)	N/A
UCAS code	6B15	
JACS code	H508	
Awarding Institution:	University of	Plymouth
Teaching institution(s):	City College F	Plymouth
Accrediting body(ies)		

The course is not currently accredited however the intention is to apply for accreditation once we have our first round of graduates in Sept 2019.

The intention is to apply for partial accreditation of IEng status through RINA and IMAREst.

Distinctive Features of the Programme and the Student Experience

A Naval Architect is a professional engineer who is responsible for the design, construction and repair of ships, boats, other marine vessels and offshore structures, both civil and military, including:

•Merchant ships - Oil/Gas Tankers, Cargo Ships, Cruise Liners, etc

- •Passenger/Vehicle Ferries
- •Warships Frigates, Destroyers, Aircraft Carriers, Amphibious Ships, etc
- •Submarines and underwater vehicles

•Offshore Drilling Platforms, Semi Submersibles, FPSOs

•High Speed Craft - Hovercraft, Multi-Hull Ships, Hydrofoil Craft, etc

•Workboats - Fishing Vessels, Tugs, Pilot Vessels, Rescue Craft etc

•Yachts, Power Boats and other recreational craft

Some of these are among the largest and most complex and highly valued moveable structures produced by mankind. Without them to provide for the safe and efficient transport and recovery of the world's raw materials and products, modern society as we know it could not exist. This programme will develop a broad knowledge base of Naval Architecture, where applicable students will carry out practical design projects, using proven theory to solve engineering problems and study new technologies and engineering theory, engineering codes and specifications. During the course guided learning and varied dynamic assessments will provide essential knowledge and understanding which will lead into the final group project, where teams of engineers from different engineering disciplines will work together sharing their knowledge and compete in given challenges.

Throughout many of the modules, you will use a range of computer based simulation and industry standard software.

Delivery of certain modules will be within specialist workshop/ laboratory areas. Delivery is planned to be flexible to accommodate both our part time and full time students.

Relevant QAA Subject Benchmark Group(s)

The subject benchmark statement for Engineering (2015)1 defines the academic standard expected of graduates with an engineering degree. The Characteristics Statement for Foundation Degrees (September 2015)₂ describes the distinctive features of a Foundation Degree delivered in the UK. In conjunction with the two statements listed above, the programme aims and programme intended learning outcomes have been created with the Engineering Council in the UK-SPEC UK standard for professional engineering competence www.engc.co.uk Third edition 3, the QAA Quality Code₄ and the SEEC Level Descriptors(2010)₅ in mind.

The Programme of study comprises of 240 module credits across level 4 and level 5 with 120 credits per level. The aim of the programme is too develop skills consistent with Engineering Council and Engineering Subject Benchmarks. Due to our strong links with employers in the city and high number of part time learners who are already employed in industry our programme has been developed to provide for the varied roles across the city as Engineers, as well as provide a solid grounding to our full time students wishing to further their study or enter employment. Due to two very different types of Naval Architecture Student one being part time (Babcock employee) and one being full time with intentions of progression to University of Plymouth we have included an optional module choice at level 5.

Programme Structure

Full Time FdSc

	Stage 1								
Module Code	Module Title	No. of Credits	Core / Optional						
CITY1077	Engineering Mathematics	20	Core						
CITY1078	Engineering Science 1	20	Core						
CITY1091	Engineering Materials	20	Core						
CITY1092	CAD Techniques & Design	20	Core						
CITY1093	Naval Architecture	20	Core						
CITY1099	Management Techniques in Naval Architecture	20	Core						
	Stage 2								
CITY2092	Engineering Science 2	20	Core						
CITY2093	Advanced CAD & FEA	20	Core						
CITY2098	Fluid Mechanics and CFD	20	Core						
CITY2095	Composite Materials for the Marine Environment	20	Opt						
CITY2096	Engine Technology and Marine Propulsion Systems	20	Core						
CITY2097	Project	20	Core						
CITY2101	Further Naval Architecture & Regulatory Framework	20	Opt						
CITY2092	Engineering Science 2	20	Core						

Part Time FdSc

	Stage 1								
Module Code	Module Title	No. of Credits	Core / Optional						
CITY1077	Engineering Mathematics	20	Core						
CITY1078	Engineering Science 1	20	Core						
CITY1091	Engineering Materials	20	Core						
CITY1092	CAD Techniques & Design	20	Core						
	Stage 2								
CITY1093	Naval Architecture	20	Core						
CITY1094	Management Techniques in Marine Engineering	20	Core						
CITY2092	Engineering Science 2	20	Core						
CITY2093	Advanced CAD & FEA	20	Core						
	Stage 3								
CITY2098	Fluid Mechanics and CFD	20	Core						
CITY2095	Composite Materials for the Marine Environment	20	Opt						
CITY2096	Engine Technology and Marine Propulsion Systems	20	Core						
CITY2097	Project	20	Core						
CITY2101	Further Naval Architecture & Regulatory Framework	20	Opt						

Programme Aims

This programme aims to:

- 1. Establish broad foundation knowledge on which to develop further skills as technology advances and to enable students to apply engineering principles to the analysis and design of engineering systems.
- 2. Provide the opportunity to 'learn through design' via practical and project-based work, particularly within the context of Naval Architecture design.
- 3. Provide an awareness of the business implications of engineering decisions and a knowledge of the interrelationship between the market, engineering activities and the management structures
- 4. Provide the opportunity to develop communication, data collection and analysis, ingenuity, problem solving, application and diagnostic skills.

Programme Intended Learning Outcomes Knowledge and understanding

On successful completion graduates should have developed:

1) A sound theoretical approach to the application of technology in Naval Architecture practice.

2) The ability to identify, review and select techniques, procedures and methods to undertake engineering tasks within the Naval Architecture Sector.

3) A sound evidence-based approach to problem solving and contribute to continuous improvement.

Cognitive and intellectual skills

On successful completion graduates should have developed:

1) The ability to Identify, review and select techniques, procedures and methods to undertake marine engineering tasks.

2) The ability to use results of analysis to solve marine engineering problems, apply technology and implement solutions.

3) The ability to Implement design solutions and contribute to their evaluation through projects focused upon the Naval Architecture Industry.

Key and transferable skills

On successful completion graduates should have developed the ability to:

1) Communicate ideas and information; through verbal and written forms using appropriate terminology and presentation of data.

2) Work independently or as a member of a team.

Employment related skills

On successful completion graduates should have developed:

- 1) Good student centred learning skills which will promote lifelong learning and a commitment to continuing professional development to achieve flexibility within the work environment.
- 2) The ability to liaise with employers through work based design projects.

Practical skills

On successful completion graduates should have developed:

- 1) The ability to select and use appropriate equipment to perform engineering tasks.
- 2) The ability to monitor, analyse and evaluate engineering systems within Naval Architecture.

Admissions Criteria, including APCL, APEL and DAS arrangements

All applicants must have GCSE (or equivalent) Maths and English at Grade C or above or Grade 4 and above on the new grading structure.

Entry Requirements for FdSc N	Entry Requirements for FdSc Naval Architecture (6246/6247)							
A-level/AS-level	Normal minimum entry requirements are 48 on new UCAS Tariff at A-level to include Grade D in Maths or Physics							
BTEC National Diploma/QCF Extended Diploma	Candidates are interviewed before an offer is made. But an equivalent of 48 UCAS points in an Engineering Subject							
Access to Higher Education at level 3	Candidates are interviewed before an offer is made. Pass an Access to HE Diploma in Science with an equivalent of 48 UCAS points							
Welsh Baccalaureate	Normal minimum entry requirements are an equivalent of 48 on new UCAS Tariff include Maths, Physics or Engineering							
Scottish Qualifications Authority	Normal minimum entry requirements are an equivalent of 48 on new UCAS Tariff include Maths, Physics or Engineering							
Irish Leaving Certificate	Normal minimum entry requirements are an equivalent of 48 on new UCAS Tariff include Maths, Physics or Engineering							
International Baccalaureate	Normal minimum entry requirements are an equivalent of 48 on new UCAS Tariff include Maths, Physics or Engineering							
Non Standard Qualifications with experience	All non-standard applicants are interviewed by the tutor and screened centrally to ensure impartial oversight.							

Level 5 entry:

Students may enter at level 5 with a relevant HNC and 120 module credits subject to being APCL'd. PU Regulations apply.

Progression criteria for Final and Intermediate Awards

Students, who successfully complete the FdSc may progress to:

- BSc (Hons) Integrated Technologies Engineering (City College Plymouth) Level-6 top up
- BEng Marine Technology (University of Plymouth) Level-6 (requiring FdSc with 60% aggregate)

Exceptions to Regulations

Through application the college has been granted exception to regulations to allow part time students to APCL 120 level 4 credits and a further 40 credits at level 5 into year 3 of FdSc Naval Architecture if they have passed the HNC and studied a further 40 credits of level 5 modules as a short course during their part time year 2 of study. The two level 5 modules will be: CITY2092 Engineering Science 2 and CITY 2093 Advanced CAD and FEA

Transitional Arrangements

The College is currently delivering a FdSc Naval Architecture. It is planned that all students currently enrolled on these programmes will transfer to the new Programme. Transitional Arrangements to ensure all learning outcomes are met are listed below. Students will have all previous relevant module grades APCL'd. All existing students have been consulted to the transitional arrangement and have signed a consent form. Existing Full time students will move to the new stage 2.

Part time first years will need to study CITY1092 CAD Techniques and Design in 2017 /2018 instead of CITY1099 Management Techniques in Naval Architecture in their second year, and the standard part time third year in 2020/2021.

Part time second years will need to study CITY2093 Advanced CAD and FEA instead of CITY2098 Fluid Mechanics and CFD in 2020/2021.

All new students from September 2017 will enrol on the new structure.

Mapping and Appendices:

ILO's against Modules Mapping (Template attached) Please see appendix 13.1 Assessment against Modules Mapping Please see appendix 13.2 Skills against Modules Mapping Please see appendix 13.3 Work Based Learning Mapping Please see appendix 13.4

	LEVEL 4							
FHEQ Descriptors	Subject Benchmark(s)	Programme Aims	Programme Outcomes	Core Modules linked to outcomes				
Students will have demonstrated: Knowledge of the underlying concepts and principles associated with their areas of study;	A2, Use appropriate scientific, technical or engineering principles.	1.Establish broad foundation knowledge on which to develop further skills as technology advances and to enable students to apply engineering principles to the analysis and design of engineering systems.	 8.1.1) A sound theoretical approach to the application of technology in Naval Architecture practice. 8.1.2) The ability to identify, review and select techniques, procedures and methods to undertake engineering tasks within the Naval Architecture Sector. 8.2.1) The ability to Identify, review and select techniques, procedures and methods to undertake engineering tasks. 	CITY1077, CITY1078, CITY1091, CITY1092, CITY1093, CITY1099.				
Ability to evaluate and interpret these within the context of that area of study;	A1, Review and select appropriate techniques, procedures and methods to undertake tasks. B1, Identify problems and apply appropriate methods to identify causes and achieve satisfactory solutions. B2, Identify, organise and use resources effectively to complete tasks, with consideration for cost, quality, safety, security and environmental impact. D1, Use oral, written and electronic methods for the communication in English1 of technical and other information.	 Establish broad foundation knowledge on which to develop further skills as technology advances and to enable students to apply engineering principles to the analysis and design of engineering systems. Provide the opportunity to 'learn through design' via practical and project based work, particularly within the context of Naval Architecture design. Provide the opportunity to develop communication, data collection and analysis, ingenuity, problem solving, application and diagnostic skills. 	 8.1.2) The ability to identify, review and select techniques, procedures and methods to undertake engineering tasks within the Naval Architecture Sector. 8.1.3) A sound evidence-based approach to problem-solving and contribute to continuous improvement. 8.2.2) The ability to use results of analysis to solve marine engineering problems, apply technology and implement solutions. 	CITY1077, CITY1078, CITY1091, CITY1092, CITY1093, CITY1099.				

Page 10 of 46 University of Plymouth Academic Partnerships Programme Quality Handbook UK

Ability to present, evaluate and interpret qualitative and quantitative data;		4. Provide the opportunity to develop communication, data collection and analysis, ingenuity, problem solving, application and diagnostic skills.	 8.2.2) The ability to use results of analysis to solve marine engineering problems, apply technology and implement solutions. 8.3.1) Communicate ideas and information; through verbal and written forms using appropriate terminology and presentation of data. 	CITY1077, CITY1078, CITY1091, CITY1093.
Students will be able to: Evaluate the appropriateness of different approaches to solving problems related to their area of study;	A1, Review and select appropriate techniques, procedures and methods to undertake tasks. A2, Use appropriate scientific, technical or engineering principles. B1, Identify problems and apply appropriate methods to identify causes and achieve satisfactory solutions.	4. Provide the opportunity to develop communication, data collection and analysis, ingenuity, problem solving, application and diagnostic skills.	 8.1.2) The ability to identify, review and select techniques, procedures and methods to undertake engineering tasks within the Naval Architecture Sector. 8.1.3) A sound evidence-based approach to problem-solving and contribute to continuous improvement. 8.2.2) The ability to use results of analysis to solve engineering problems, apply technology and implement solutions. 	CITY1077, CITY1078, CITY1091, CITY1093.
Communicate the results of their study accurately and reliably and with structured and coherent argument	D1, Use oral, written and electronic methods for the communication in English1 of technical and other information.	4. Provide the opportunity to develop communication, data collection and analysis, ingenuity, problem solving, application and diagnostic skills.	8.3.1) Communicate ideas and information; through verbal and written forms using appropriate terminology and presentation of data.	CITY1078, CITY1091, CITY1092, CITY1093, CITY1099.
Undertake further training and develop new skills within a structured and managed environment	 E4, Carry out and record CPD necessary to maintain and enhance competence in own area of practice including: Undertake reviews of own development needs Plan how to meet personal and organisational objectives Carry out planned (and unplanned) CPD activities Maintain evidence of competence development 	 Establish broad foundation knowledge on which to develop further skills as technology advances and to enable students to apply engineering principles to the analysis and design of engineering structures. Provide the opportunity to 'learn through design' via practical and project based work, particularly within the context of Naval Architecture design. Provide an awareness of the business implications of engineering decisions and a 	8.4.1) Good student centred learning skills which will promote lifelong learning and a commitment to continuing professional development to achieve flexibility within the work environment.	CITY1077, CITY1078, CITY1091, CITY1092, CITY1093, CITY1099.

Page 11 of 46 University of Plymouth Academic Partnerships Programme Quality Handbook UK

	 Evaluate CPD outcomes against any plans made Assist others with their own CPD. 	 knowledge of the inter- relationship between the market, engineering activities and the management structures. 4. Provide the opportunity to develop communication, data collection and analysis, ingenuity, problem solving, application and diagnostic skills. 		
Students will also have: The qualities and transferable skills necessary for employment requiring the exercise of some personal responsibility	C1, Work reliably and effectively without close supervision, to the appropriate codes of practice. E1, Comply with the Code of Conduct of your institution. E2, Manage and apply safe systems of work.	 Establish broad foundation knowledge on which to develop further skills as technology advances and to enable students to apply engineering principles to the analysis and design of engineering structures. Provide an awareness of the business implications of engineering decisions and a knowledge of the inter- relationship between the market, engineering activities and the management structures. Provide the opportunity to develop communication, data collection and analysis, ingenuity, problem solving, application and diagnostic skills. 	 8.4.1) Good student centred learning skills which will promote lifelong learning and a commitment to continuing professional development to achieve flexibility within the work environment. 8.4.2) The ability to liaise with employers through work based design projects. 	CITY1077, CITY1078, CITY1091, CITY1092, CITY1093, CITY1099.

	LEVEL 5					
FHEQ Descriptors	Subject Benchmark(s)	Programme Aims	Programme Outcomes	Core Modules linked to outcomes		
Students will have demonstrated: Knowledge and critical understanding of the well- established principles of their area of study and the way in which those principles have developed;	 A1, Maintain and extend a sound theoretical approach to the application of technology in engineering practice. B2, Contribute to the design and development of engineering solutions. B3, Implement design solutions and contribute to their evaluation. 	 Establish broad foundation knowledge on which to develop further skills as technology advances and to enable students to apply engineering principles to the analysis and design of engineering systems. Provide the opportunity to 'learn through design' via practical and project based work, particularly within the context of Naval Architecture design. 	 8.1.1) A sound theoretical approach to the application of technology in Naval Architecture practice. 8.1.2) The ability to identify, review and select techniques, procedures and methods to undertake engineering tasks within the Naval Architecture Sector. 8.1.3) A sound evidence-based approach to problem-solving and contribute to continuous improvement. 	CITY2092, CITY2093, CITY2098, CITY2095, CITY2096, CITY2097, CITY2101.		
Ability to apply underlying concepts and principles outside the context in which they were first studied, including where appropriate, the application of those principles in an employment context;	A2, Use a sound evidence- based approach to problem-solving and contribute to continuous improvement. B1, Identify, review and select techniques, procedures and methods to undertake engineering tasks. B2, Contribute to the design and development of engineering solutions. B3, Implement design solutions and contribute to their evaluation.	 Establish broad foundation knowledge on which to develop further skills as technology advances and to enable students to apply engineering principles to the analysis and design of engineering systems. Provide the opportunity to 'learn through design' via practical and project based work, particularly within the context of Naval Architecture design.particularly within the context of structural design. Provide the opportunity to develop communication, data collection and analysis, ingenuity, problem solving, application and diagnostic skills. 	 8.1.3) A sound evidence-based approach to problem-solving and contribute to continuous improvement. 8.2.1) The ability to Identify, review and select techniques, procedures and methods to undertake marine engineering tasks. 8.2.2) The ability to use results of analysis to solve marine engineering problems, apply technology and implement solutions. 8.3.1) Communicate ideas and information; through verbal and written forms using appropriate terminology and presentation of data. 8.4.1) Good student centred learning skills which will promote lifelong learning and a commitment to continuing professional development to achieve flexibility within the work environment. 8.4.2) The ability to liaise with employers through work based design projects. 	CITY2092, CITY2093, CITY2098, CITY2095, CITY2096, CITY2097, CITY2101.		

Page 13 of 46 University of Plymouth Academic Partnerships Programme Quality Handbook UK

Knowledge of the main methods of enquiry in the subject relevant to the named award, and ability to evaluate critically the appropriateness of different approaches to solving problems in the field of study;	A1, Maintain and extend a sound theoretical approach to the application of technology in engineering practice. A2, Use a sound evidence- based approach to problem-solving and contribute to continuous improvement. B2, Contribute to the design and development of engineering solutions. B3, Implement design solutions and contribute to their evaluation. C1, Plan for effective project implementation.	 Establish broad foundation knowledge on which to develop further skills as technology advances and to enable students to apply engineering principles to the analysis and design of engineering systems. Provide the opportunity to develop communication, data collection and analysis, ingenuity, problem solving, application and diagnostic skills. 	 8.5.1) The ability to select and use appropriate equipment to perform engineering tasks. 8.5.2) The ability to monitor, analyse and evaluate engineering systems within Naval Architecture. 8.1.3) A sound evidence-based approach to problem-solving and contribute to continuous improvement. 8.2.1) The ability to Identify, review and select techniques, procedures and methods to undertake marine engineering tasks. 8.2.2) The ability to use results of analysis to solve marine engineering problems, apply technology and implement solutions. 8.2.3) The ability to Implement design solutions and contribute to their evaluation through projects focused upon the Naval Architecture Industry. 8.5.1) The ability to select and use appropriate equipment to perform engineering tasks. 8.5.2) The ability to monitor, analyse and evaluate engineering systems within Naval Architecture. 	CITY2092, CITY2093, CITY2098, CITY2095, CITY2096, CITY2097, CITY2101.
An understanding of the limits of the knowledge, and how this influences analyses and interpretations based on that knowledge	A2, Use a sound evidence- based approach to problem-solving and contribute to continuous improvement.	 Establish broad foundation knowledge on which to develop further skills as technology advances and to enable students to apply engineering principles to the analysis and design of engineering systems. Provide the opportunity to develop communication, data collection and analysis, ingenuity, problem solving, application and diagnostic skills. 	 8.1.1) A sound theoretical approach to the application of technology in Naval Architecture practice. 8.1.3) A sound evidence-based approach to problem-solving and contribute to continuous improvement. 8.4.1) Good student centred learning skills which will promote lifelong learning and a commitment to continuing professional development to achieve flexibility within the work environment. 	CITY2092, CITY2093, CITY2098, CITY2095, CITY2096, CITY2097, CITY2101.

Students will be able to: Use a range of established techniques to initiate and undertake critical analysis of information, and to propose solutions to problems arising from that analysis;	A2, Use a sound evidence- based approach to problem-solving and contribute to continuous improvement. B1, Identify, review and select techniques, procedures and methods to undertake engineering tasks. B3, Implement design solutions and contribute to their evaluation.	 1. Establish broad foundation knowledge on which to develop further skills as technology advances and to enable students to apply engineering principles to the analysis and design of engineering systems. 4. Provide the opportunity to develop communication, data collection and analysis, ingenuity, problem solving, application and diagnostic skills. 	 8.1.1) A sound theoretical approach to the application of technology in Naval Architecture practice. 8.1.2) The ability to identify, review and select techniques, procedures and methods to undertake engineering tasks within the Naval Architecture Sector. 8.1.3) A sound evidence-based approach to problem-solving and contribute to continuous improvement. 8.2.1) The ability to Identify, review and select techniques, procedures and methods to undertake marine engineering tasks. 8.2.2) The ability to ldentify, review and select techniques, procedures and methods to undertake marine engineering tasks. 8.2.2) The ability to use results of analysis to solve marine engineering problems, apply technology and implement solutions. 8.2.3) The ability to Implement design solutions and contribute to their evaluation through projects focused upon the Naval Architecture Industry. 8.5.1) The ability to select and use appropriate equipment to perform engineering tasks. 8.5.2) The ability to monitor, analyse and evaluate engineering systems within Naval Architecture. 8.3.1) Communicate ideas and information through projects interpretation through and the protein and the perform engineering tasks. 	CITY2092, CITY2098, CITY2095, CITY2096, CITY2101.
Effectively communicate information, arguments and analysis in a variety of forms to specialist and non-specialist audiences, and deploy key techniques of the discipline	with others at all levels. D2, Present and discuss proposals. D3, Demonstrate personal and social skills.	develop communication, data collection and analysis, ingenuity, problem solving, application and diagnostic skills.	information; through verbal and written forms using appropriate terminology and presentation of data.	
effectively; Undertake further training, develop existing skills and acquire new competences that will enable them to assume	E4, Carry out and record CPD necessary to maintain and enhance competence in own area of practice.	1.Establish broad foundation knowledge on which to develop further skills as technology advances and to enable students to apply engineering principles to the analysis and design of engineering structures.	 8.4.1) Good student centred learning skills which will promote lifelong learning and a commitment to continuing professional development to achieve flexibility within the work environment. 8.4.2)The ability to liaise with employers through work based design projects. 	CITY2092, CITY2093, CITY2098, CITY2095, CITY2096, CITY2097, CITY2101.

Page 15 of 46 University of Plymouth Academic Partnerships Programme Quality Handbook UK

significant responsibility within organisations.		2. Provide the opportunity to 'learn through design' via practical and project based work, particularly within the context of Naval Architecture design.		
Students will also have: The qualities and transferable skills necessary for employment requiring the exercise of personal responsibility and decision- making	E4, Carry out and record CPD necessary to maintain and enhance competence in own area of practice. E5, Exercise responsibilities in an ethical manner.	 Establish broad foundation knowledge on which to develop further skills as technology advances and to enable students to apply engineering principles to the analysis and design of engineering structures. Provide the opportunity to 'learn through design' via practical and project based work, particularly within the context of Naval Architecture design. Provide an awareness of the business implications of engineering decisions and a knowledge of the inter- relationship between the market, engineering activities and the management structures. Provide the opportunity to develop communication, data collection and analysis, ingenuity, problem solving, application and diagnostic skills. 	 8.1.1) A sound theoretical approach to the application of technology in Naval Architecture practice. 8.1.2) The ability to identify, review and select techniques, procedures and methods to undertake marine engineering tasks within the Naval Architecture Sector. 8.1.3) A sound evidence-based approach to problem-solving and contribute to continuous improvement. 8.2.1) The ability to Identify, review and select techniques, procedures and methods to undertake marine engineering tasks. 8.2.2) The ability to Identify, review and select techniques, procedures and methods to undertake marine engineering tasks. 8.2.2) The ability to use results of analysis to solve marine engineering problems, apply technology and implement solutions. 8.2.3) The ability to Implement design solutions and contribute to their evaluation through projects focused upon the Naval Architecture Industry. 8.3.1) Communicate ideas and information; through verbal and written forms using appropriate terminology and presentation of data. 8.3.2) Work independently or as a member of a team. 8.4.1) Good student centred learning skills which will promote lifelong learning and a commitment to continuing professional development. 8.4.2) The ability to liaise with employers through work based design projects. 8.5.1) The ability to select and use appropriate equipment to perform engineering tasks. 	CITY2092, CITY2093, CITY2098, CITY2095, CITY2096, CITY2097, CITY2101.

Appendix 13.2 Assessment against modules Map

	CITY107 7 Engineeri ng Mathema tics (Core)	CITY107 8 Engineeri ng Science 1 (Core)	CITY109 1 Engineeri ng Materials (Core)	CITY109 2 CAD Techniqu es and Design (Core)	CITY1 093 Naval Archite cture (Core)	CITY1099 Management Techniques in Naval Architecture (Core)	CITY 2092 Engineerin g Science 2 (Core)	CITY2093 Advanced CAD and FEA (Core)	CITY2098 Fluid Mechanics and CFD (Core)	CITY2095 Composite Materials for the Marine Environment (Optional)	CITY 2096 Engine Technology and Marine Propulsion Systems (Core)	CITY2 097 Project (Core)	CITY2101 Further Naval Architectur e & Regulatory Framework (Optional)
Essay			0										
Report		0	0			0				0			
Engineering Problem Assignment							0						0
Portfolio				0				0				0	
Exam									0				
In Class Test							0				0		0
Practical					0					0	0		
Presentation						0							

Appendix 13.3 Skills against modules Map

	CITY107 7 Engineeri ng Mathema tics (Core)	CITY107 8 Engineeri ng Science 1 (Core)	CITY109 1 Engineeri ng Materials (Core)	CITY109 2 CAD Techniqu es and Design (Core)	CITY109 3 Naval Architect ure (Core)	CITY1099 Manageme nt Technique s in Naval Architectur e (Core)	CITY 2092 Engineerin g Science 2 (Core)	CITY2093 Advanced CAD and FEA (Core)	CITY2098 Fluid Mechanics and CFD (Core)	CITY2095 Composite Materials for the Marine Environment (Optional)	CITY 2096 Engine Technology and Marine Propulsion Systems (Core)	CITY2 097 Project (Core)	CITY2101 Further Naval Architectur e & Regulatory Framework (Optional)
Essay Writing			0							0			
Report Writing			0	0	0							0	
Project Planning / Management					0					0	0		0
Research		0			0		0	0		0	0	0	0
IT Skills			0	0	0				0		0		0
Team Work					0						0		
Evaluation	0	0			0		0	0		0	0	0	0
Data Analysis	0	٥	0	٥	٥				0	0	0	0	0

	FHEQ level: 5			
WBL Activity	Prog Intended LO	Related Modules	Assessed LO	Range of Assessments
Work based Design Projects	 8.1.1) A sound theoretical approach to the application of technology in marine engineering practice. 8.1.2) The ability to identify, review and select techniques, procedures and methods to undertake engineering tasks within the Marine Engineering Sector. 8.1.3) A sound evidence-based approach to problem-solving and contribute to continuous improvement. 8.2.3) The ability to Implement design solutions and contribute to their evaluation through projects focused upon the Marine Engineering Industry. 8.3.1) Communicate ideas and information; through verbal and written forms using appropriate terminology and presentation of data. 8.3.2) Work independently or as a member of a team. 8.4.2) The ability to liaise with employers through work based design 8.5.2) The ability to monitor, analyse and evaluate marine engineering systems. 	CITY 1092 CAD Techniques and Design CITY 2097 Project	 LO2. Produce rendered and animated visualisations to present to employers LO3. Formulate, implement, evaluate and present a work based design project LO4. Report to employers on the sustainability and ecology in design and the product life cycle LO1. Present and agree specifications and project planning LO2. Implement the project within agreed procedures and to specification. LO3. Evaluate the project LO4. Present a project 	Portfolio of Evidence Report to employers Portfolio
Visit to Teignbridge Propeller Manufacturer And Guest lecture	 8.1.1) A sound theoretical approach to the application of technology in marine engineering practice. 8.1.2) The ability to identify, review and select techniques, procedures and methods to undertake engineering tasks within the Marine Engineering Sector. 8.2.3) The ability to Implement design solutions and contribute to their evaluation through projects focused upon the Marine Engineering Industry. 8.3.1) Communicate ideas and information; through verbal and written forms using appropriate terminology and presentation of data. 8.5.2) The ability to monitor, analyse and evaluate marine engineering systems. 	CITY 2096 Engine Technology and Marine Propulsion Systems	LO3. Assess transmission systems and justify applications to different types of vessels. LO4. Apply Propeller design theory to individual 3d Propeller projects and justify its design to peers through seminars	Presentation to Employers Assessed Seminar

Page **19** of **46** University of Plymouth Academic Partnerships Programme Quality Handbook UK

An explanation of this map:

Teaching Learning and Assessment are being aligned to embed Work Based Learning for both Full and Part Time Learners. All students will be addressed by an employer to present the engineering problem for the CAD Techniques and Design module CITY1092. The Employer will then be part of the assessment of the finished designs. All Students in the Project CITY2097 will present their projects to a range of employers during the presentation day. Teignbridge Propeller manufacturer has agreed to conduct a work based visit to show the students all aspects of Propeller design, prior to students participating in a propeller design project prior to their final assessment of Engine Technology and Marine Propulsion Systems CITY2096.

Additional Guidance for Learning Outcomes:

To ensure that the module is pitched at the right level check your intended learning outcomes against the following nationally agreed standards

• Framework for Higher Education Qualifications

http://www.gaa.ac.uk/Publications/InformationAndGuidance/Documents/FHEQ08.pdf

- Subject benchmark statements
 <u>http://www.qaa.ac.uk/ASSURINGSTANDARDSANDQUALITY/SUBJECT-</u>
 <u>GUIDANCE/Pages/Subject-benchmark-statements.aspx</u>
- SEEC level descriptors <u>http://www.seec.org.uk/academic-credit/seec-credit-level-descriptors-2010</u> (scroll to pdf link at bottom of page)
- Professional, regulatory and statutory (PSRB) accreditation requirements (where necessary e.g. health and social care, medicine, engineering, psychology, architecture, teaching, law)
- QAA Quality Code http://www.qaa.ac.uk/AssuringStandardsAndQuality/quality-code/Pages/default.aspx

Module Records

SECTION A: DEFINITIVE MODULE RECORD. Proposed changes must be

submitted via Faculty Quality Procedures for approval and issue of new module code.

MODULE CODE: CITY1077

MODULE TITLE: Engineering Mathematics

CREDITS: 20FHEQ LEVEL: 4JACS CODE: G160

PRE-REQUISITES: NCO-REQUISITES: NCOMPENSATABLE: Y

SHORT MODULE DESCRIPTOR:

To develop the student's mathematical ability and to apply principles to the solution of engineering problems and to make use of mathematical computer based packages.

ELEMENTS OF ASS	ESSMENT				
WRITTEN EXAMINA	TION	COURSEV	VORK	PRACTICE	
E1 (Formally scheduled)	50%	C1	50%	P1	
E2 (OSCE)		C2		P3	
T1 (in-class test)		A1			

SUBJECT ASSESSMENT PANEL: Technology

Professional body minimum pass mark requirement: n/a

MODULE AIMS:

- To gain a solid foundation in algebra, trigonometry, functions and calculus in order to associate and recognise the importance of mathematics in the analysis of engineering problems
- To develop mathematical problem solving simultaneously with other science and engineering modules.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of a module the learner will be expected to be able to:

- LO1. recognise the essential application of mathematical techniques to solve engineering problems
- LO2. apply exact mathematical methods to analyse and solve problems of an engineering and scientific nature
- LO3. use complex number theory in practical engineering applications
- LO4. understand a variety of techniques of differential and integral calculus and their associated applications in engineering

DATE OF APPROVAL: May 2017	FACULTY/OFFICE: Academic Partnerships
DATE OF IMPLEMENTATION: Sept 2017	SCHOOL/PARTNER: City College Plymouth
DATE(S) OF APPROVED CHANGE:	TERM: All Year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2020/2021 NATIONAL COST CENTRE: 122

MODULE LEADER: Owais RajaOTHER MODULE STAFF: N/A

Summary of Module Content

Revision of Algebra and Arithmetic

Basic number and arithmetic operations, algebraic techniques including evaluation of formula, rearranging formula, solving simple equations, laws of logarithms, laws of indices, etc. These skills will be built upon throughout the delivery of each individual topic in this module.

Trigonometric functions and graphs

Simple trigonometric functions of sine, cosine, tangent and hyperbolic functions of sinh⁻¹, cosh⁻¹ and tanh⁻¹. The applications of these functions in engineering including vectors and waveform combination.

Complex numbers

Addition, subtraction, multiplication and division of complex numbers in Polar and Cartesian form. The Argand diagram. The modulus and argument. Applications in engineering.

Differential Calculus

Basic differentiation techniques of polynomial, trigonometric, exponential and logarithmic functions. Further techniques including the product, quotient and chain rules. Engineering applications to optimisation and higher order differentials.

Integral calculus

Basic integration techniques of polynomial, trigonometric and exponential functions. Further techniques including integration by parts and substitution. The methodical applications of definite and indefinite integration with and without engineering scenarios including the interpretation of areas under a curve.

SUMMARY OF TEACHING	AND LEA	RNING
Scheduled Activities	Hours	Comments/Additional Information
Lecture	60	30 x 2 hour lectures
Tutorial	15	Group and individual academic tutorials
Independent Study	125	Guided self-study
Total	200	

Category	Element	Component Name	Component weighting	<i>Comments</i> Include links to learning objectives
Written exam	E1	End of Module Examination	100%	LO1-4 (Covering topics not assessed in coursework)
Coursework	C1	Assignment	100%	LO1-4

MODULE CODE: CITY1078 MODULE TITLE: Engineering Science 1

CREDITS: 20 FHEQ LEVEL: 4 JACS CODE: H100

PRE-REQUISITES: N CO-REQUISITES: N COMPENSATABLE: Y

SHORT MODULE DESCRIPTOR:

An introduction to mechanical principles, energy transfer and AC electrical theory. Mechanical principles including solid mechanics, statics, dynamics and mechanical vibrations. Modes of heat transfer and energy losses. Electrical principles and single phase AC theory.

ELEMENTS OF ASSES	SSMENT						
WRITTEN EXAMIN	NATION	(COURSEW	ORK		PR	ACTICE
E1 (Formally scheduled)	50%	C1		50%	P1		
E2 (OSCE)		C2			P3		
T1 (in-class test)		A1					

SUBJECT ASSESSMENT PANEL: Technology

Professional body minimum pass mark requirement: n/a

MODULE AIMS:

- To investigate the fundamental scientific principles which underpin the design and operation of engineering systems.
- To give a mechanical and electrical overview which will provide the basis for further study in specialist areas of engineering.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of a module the learner will be expected to be able to:

LO1. Demonstrate an understanding of basic static and dynamic mechanical systems

LO2. Investigate energy transfer in thermal and fluid systems

LO3. Recognise and recall how DC theory relates to simple electrical machines

LO4. Show knowledge and awareness of the fundamental principles of single phase AC theory

DATE OF APPROVAL: May 2017	FACULTY/OFFICE: Academic Partnerships
DATE OF IMPLEMENTATION: Sept 2017	SCHOOL/PARTNER: CCP
DATE(S) OF APPROVED CHANGE:	TERM: All Year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23 NATIONAL COST CENTRE: 114

MODULE LEADER: Tamal Barman OTHER MODULE STAFF:

Summary of Module Content

Statics and Dynamics: SF and BM, bending stresses. Torsion . Uniform acceleration linear and angular. Newton's laws of motion, mass moment of inertia, kinetic energy, effects of friction. Vibrations, SHM, forcing and damping. Energy Transfer: Heat transfer: conduction, convection, radiation, thermal conductivity, forced convection, black and grey body radiation. insulated surfaces. Viscosity: boundary layer formation, laminar and turbulent flow, pressure loss in pipes. Energy losses: dynamic viscosity, power loss in bearings. pipe friction losses.

Electrical Principles: Conductors, insulators, voltage and current. Ohm's law, Kirchhoff's law. Power: Electro-magnetic induction, transformers, Lenz's and Faraday's laws. Generator and motor principles. Single Phase AC theory: Non-resonant circuits: R-C-L circuits; Argand diagrams. Resonant circuits, L-C series and parallel, resonant frequency, Power factor correction, Complex waveforms: graphical analysis, odd and even-harmonics, phase shift, non-linear characteristics.

SUMMARY OF TEACHING	AND LEA	RNING
Scheduled Activities	Hours	Comments/Additional Information
Lecture / Lab time	60	30 x 2hr sessions
Tutorial	15	30 x 1hr
Independent Study	125	A mixture of guided study and self-study.
Total	200	

Category	Element	Component Name	Component weighting	Comments Include links to learning objectives
Written exam	E_	End of Module Examination	100%	LO1, LO2
Coursework	C_	Assignment (Report on in class experiments)	100%	LO3, LO4

Updated by: Tamal Barman Date: July 2022 **Approved by**: Alan Austin Date: July 2022

MODULE CODE: CITY1091 MODULE TITLE: Engineering Materials

CREDITS: 20	FHEQ LEVEL:	4	JACS CODE: J500

 PRE-REQUISITES:
 CO-REQUISITES:
 COMPENSATABLE:

 None
 Yes

SHORT MODULE DESCRIPTOR: (max 425 characters)

Study of Material structure. Appreciation of material properties. Understanding of manufacturing and design considerations for the use of different materials.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions]					
WRITTEN EXAMINATION		COURSEWORK		PRACTICE	
E1 (Formally scheduled)		C1	100%	P1	
E2 (OSCE)		C2		P3	
T1 (in-class test)		A1			

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

To develop students' understanding and knowledge of basic manufacturing and materials technology, enabling them to appreciate why an understanding of the relationships between processing, structure, and properties is a key element in engineering.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of the module the learner will be expected to be able to:

LO1. Understand the effects of material structure on material properties.

LO2. Appreciate the effect of material choice on manufacturing procedures.

LO3. Describe the effects of processing on structure and properties of engineering materials.

LO4. Carry out tensile testing and interpret the Results.

DATE OF APPROVAL: May 2017	Academic Partnerships
DATE OF IMPLEMENTATION : September 2017	City College Plymouth
DATE(S) OF APPROVED CHANGE:	TERM: All year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23 NATIONAL COST CENTRE: 117

MODULE LEADER: Tamal Barman OTHER MODULE STAFF:

Summary of Module Content

Shaping processes (solidification processes): mechanics, engineering analysis and practice of metal casting, and plastic moulding.

Shaping processes (bulk deformation processes): mechanics, engineering analysis and practice of rolling, forging, extrusion, bar and wire drawing

Basic engineering metrology including measuring instruments and gauges for linear and angular dimensions, Investigate the feasibility of replacing metal with composite substitutes, Investigate the properties of different composite structures and layup processes.

Properties of materials. Interpretation of stress-strain curves.

Practical measurement of mechanical properties.

Qualitative description of major differences between generic classes of materials in terms of their microstructure. Influence of atomic bonding on properties. Cast structures and defects in metals. Types of polymers and additives. Polymer glass transition temperature and melting point.

Property modification techniques; relationship between structure, processing, heat treatment, and properties. Metals: plastic deformation; hot and cold working; micro defects and their influence. Polymers: drawing and moulding; directionality of properties; influence of strain rate. Alloying: use of phase equilibrium diagrams in heat treatment; types of alloy. Properties, structure, and uses of the plain carbon steels and the major non-ferrous alloys.

SUMMARY OF TEACHING AN	SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]				
Scheduled Activities	Hour	Comments/Additional Information			
	S				
Lecture	26	26x1hr lectures			
Supported Study	16	16x1hr supported engineering problems and lab			
		reporting			
Workshop activities	10	Hands on practical activities			
Directed Independent Study	20	Identified independent study			
Self-Study	105	Coursework and individual reading			
Lab Session	8	4x2hr lab sessions			
Tutorial	15	A mix of individual and group tutorials			
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours, etc)			

Category	Element	Component Name	Component weighting	<i>Comments</i> Include links to learning objectives
Coursework	C1	Lab report	50%	LO1, LO2
Coursework		Essay	50%	LO3, LO4

Updated by: Tamal Barman Date: July 2022 Approved by: Alan Austin Date: July 2022

MODULE CODE: CITY 1092	MODULE TITLE: CAD Techniques and Design

CREDITS: 20	FHEQ LEVEL:4	JACS CODE: H130	

PRE-REQUISITES:	CO-REQUISITES:	COMPENSATABLE:
None	None	Yes

SHORT MODULE DESCRIPTOR: (max 425 characters)

An Introduction into CAD in the Design Process, progressing swiftly through 2D draughting to explore 3D conceptual design and visualisation. During this module students will take part in a relevant work based design project.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions]					
WRITTEN EXAMINATION		COURSEWORK		PRACTICE	
E1 (Formally scheduled)		C1	100%	P1	
E2 (OSCE)		C2		P3	
T1 (in-class test)		A1			

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

- Investigation of how formal draughting forms a corner stone of the design process
- Practice of the skills necessary to produce and interpret drawings and computer models to British Standards
- Experimentation in to the use of 3D visualisation as an engineering tool
- Introduce Design techniques and carry out a work based design project.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of the module the learner will be expected to be able to:

LO1. Produce 2D detail and assembly drawings and 3D wireframe, surface and solid models using an industry standard CAD package to British Standards.

LO2. Produce rendered and animated visualisations to present to employers

LO3. Formulate, implement, evaluate and present a work based design project

LO4. Report to employers on the sustainability and ecology in design and the product life cycle

DATE OF APPROVAL: May 2017	Academic Partnerships
DATE OF IMPLEMENTATION: Sept 2017	City College Plymouth
DATE(S) OF APPROVED CHANGE:	TERM: All year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23

NATIONAL COST CENTRE: 143

MODULE LEADER: Martin boulter OTHER MODULE STAFF:

Summary of Module Content

CAD & Drawings in the design process

Drawing standards and formats

The use of 2D CAD drawing and editing commands

Conceptual Design and 3D CAD

3D Wireframe, Surface and Solid Modelling commands

3D Visualisation

Sustainability and ecology in design and the product lie cycle.

Material and process selection tools. Functionality, component simulation (free body diagrams, etc.) Design calculation tools - spread sheets. The design process - specifying, creating and evaluating ideas, developing and documenting. Working in a team. System design - team working.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]			
Scheduled Activities	Hour	Comments/Additional Information	
	S		
Lecture	20	10 x 2 hr lectures	
Practical Sessions	40	Application of techniques and methods learnt	
Tutorial	15	A mixture of group and personal tutorials	
Directed Independent Study	125	Working in groups and independently on their Projects	
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100	
		hours, etc)	

Category	El e m e nt	Compone nt Name	Compo nent weighti ng	<i>Comments</i> Include links to learning objectives
Written	E1			
exam	T1			
Coursework	C1	Portfolio of Evidence	100%	LO1, LO2, LO3
		Report		LO4
Practice	P1			

Updated by: Martin Boulter Date: July 2022 Approved by: Alan Austin Date: July 2022

MODULE CODE: CITY 1093	MODULE TITLE: Naval Architecture
------------------------	----------------------------------

CREDITS: 20 FHEQ LEVEL: 4 JACS CODE: H500			
	CREDITS: 20	FHEQ LEVEL: 4	JACS CODE: H500

PRE-REQUISITES:CO-REQUISITES:COMPENSATABLE:NoneYes

SHORT MODULE DESCRIPTOR: (max 425 characters)

The module introduces the theory of ship stability and the interaction between a vessel, its cargo and counteracting the effects

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions]					
WRITTEN EXAMINATION COURSEWORK PRACTICE					
E1 (Formally scheduled)		C1		P1	30%
E2 (OSCE)		C2		P3	
T1 (in-class test)	70%	A1			

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

- To stimulate and widen the student's knowledge of Naval Architecture
- To provide the student with the knowledge and abilities to research the effects of ship stability to safely operate.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of the module the learner will be expected to be able to:

LO3. Explain and calculate trim and stability at small and large angles of heel.

LO4. Analyse and calculate the effects of flooding on a ships trim and stability including countermeasures

LO5. Explain the principles of dry docking and slipping

LO6. Demonstrate the theory and practical application of a ship inclining experiment

DATE OF APPROVAL: 10 May 2017	Academic Partnerships
DATE OF IMPLEMENTATION : September 2017	City College Plymouth
DATE(S) OF APPROVED CHANGE:	TERM: All year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23 NATIONAL COST CENTRE: 115

MODULE LEADER: Martin BoulterOTHER MODULE STAFF:

Summary of Module Content

Ship stability terminology, distribution of volume, weight and buoyancy and associated coefficients, the use of data and calculations to identify a ships stability, changes of trim longitudinal and transversely due to loading and unloading. Calculate changes in draft and trim due to bilging and compartment flooding and the effect on a vessels stability. The theory of dry docking and slipping and the standard practices, the theory and practical applications of the inclining experiment and the associated calculations.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]				
Scheduled Activities	Hour	Comments/Additional Information		
	S			
Lecture	60	30 x 2hr Lectures		
Tutorial	15	a mix of group and individual tutorials		
Directed Independent Study	35	Research tasks		
Self-Study	80	Assignment and reading		
Workshop time	10			
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours, etc)		

Category	El e m e nt	Compone nt Name	Compo nent weighti ng	<i>Comments</i> Include links to learning objectives
Written exam	T1	Open book test	100%	LO1; LO2; LO3
Practice	P1	LAB	100%	LO4

Updated by: Martin Boulter Date: July 2022 Approved by: Alan Austin Date: July 2022

MODULE CODE: CITY1099 MODULE TITLE: Management Techniqu Architecture				gement Techniques in Naval
CREDITS: 20	FF	IEQ LEVEL: 4		JACS CODE: N210
PRE-REQUISITES: CO-REQUISITES: None None		COMPE	NSATABLE: Yes	

SHORT MODULE DESCRIPTOR: On completion of this unit to appraise the main techniques that improve organisations' operations.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions]						
WRITTEN EXAMI	NATION	COURSEWORK			PRACTICE	
E1 (Formally scheduled)		C1	60'	% P1	40%	
E2 (OSCE)		C2		P3		
T1 (in-class test)		A1				

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

Students will be able to explain how application of management techniques can improve the plans, designs, processes or systems for the optimisation of operational activity within an organisation and throughout the supply chain.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of the module the learner will be expected to be able to:

LO1 – Discuss contemporary management techniques used to improve and optimise operational activity, including the associated supply chains, within the field of naval architecture

LO2 – Apply financial analysis and planning control methods to naval architecture scenarios.

LO3 – Analyse the role of modern quality and performance management methods for delivering service excellence and value to the customer.

LO4 – Investigate the management challenges presented within the field of naval architecture as a result of increasing competitiveness, globalisation and environmental issues.

LO5 – Evaluate and communicate lean enterprise concepts applied to the naval architecture sector.

DATE OF APPROVAL: May 2017	Academic Partnerships
DATE OF IMPLEMENTATION September 2017	City College Plymouth
DATE(S) OF APPROVED CHANGE:	TERM: All Year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23	NATIONAL COST CENTRE: 18

MODULE LEADER: Tamal Barman OTHER MODULE STAFF:

Summary of Module Content

Operations management functions; input-transformation-output model; operations management within corporate strategic framework; functional relationship of operations management; challenges facing operations management – globalisation, environmental issues, knowledge management, technology; key performance objectives; design process; differing processes; process technologies; job design; work measurement; quality control; facility location; operations planning & control – scheduling, forecasting demand, JIT; project management; TQM.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]				
Scheduled Activities Hour Comments/Additional Information				
	S			
Lectures	30	30 x 1hr lectures		
Seminars	30	30 x 1hr seminars		
Self study	120	Reading, research, Sim Venture activities		
External Visit	3	Visit to manufacturer production line		
External Speakers	4	2 guest lectures		
Tutorials	13	Group and individual tutorials		
Total	200			

Category	Element	Component Name	Component weighting	Comments Include links to learning objectives
Coursework	С	Report	100%	LO1, LO2, LO3
Practice	Р	Presentation	100%	LO4, LO5

Updated by: Tamal Barman Date: July 2022 **Approved by**: Alan Austin Date: July 2022

MODULE CODE: CITY209	MODULE TITLE: Engineering Science 2			
CREDITS: 20	FHEQ LEVEL:	5 JACS CODE: H140		
PRE-REQUISITES:	CO-REQUISITES:	COMPENSATABLE: Yes		

SHORT MODULE DESCRIPTOR: (max 425 characters)

This module will enhance the knowledge acquired in engineering science, looking at more in depth methods of analysis of solids, statics and dynamics in the field of engineering.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions]					
WRITTEN EXAMINATION		COURSEWORK		PRACTICE	
E1 (Formally scheduled)		C1	50%	P1	
E2 (OSCE)		C2		P3	
T1 (in-class test)	50%	A1			

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

To provide the knowledge and understanding to make informed choice when selecting materials for design and manufacture

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of the module the learner will be expected to be able to:

LO1. Investigate the effects of stress and strain on solid bodies.

LO3. Analyse structures, stress, strain and deflection in 2d and 3d bodies.

LO4. Analyse rotational dynamics, balancing and simple harmonic motion.

LO5. Be able to solve a range of engineering problems.

DATE OF APPROVAL: May 2017	Academic Partnerships
DATE OF IMPLEMENTATION : September 2017	City College Plymouth
DATE(S) OF APPROVED CHANGE:	TERM: All year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23 NATIONAL COST CENTRE: 114

MODULE LEADER: Tamal BarmanOTHER MODULE STAFF:

Summary of Module Content

Complex loading systems: Poisson's Ratio, two and three dimensional loading systems, volumetric strain. Elastic constants, Relationships. Loaded beams and cylinders: Slope and deflection of beams, Flexure equation. Simply supported, cantilever, propped beams, concentrated and point loads and couples, Macaulay's Method. Thin walled cylinders; Factor of Safety, Joint stresses. Thick walled cylinders; Auto-frettage. Stress distribution. Balancing of simple and multi-plane rotating mass systems. Out of balance Flywheels .

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]				
Scheduled Activities	Hour	Comments/Additional Information		
	S			
Lecture	28	28 x 1hr lectures		
Supported Problem solving	28	28 x 1hr supported sessions		
Academic Support	15	A mix of group and individual tutorial time		
Directed Independent Study	20	Identified independent study prior to seminars		
Self-Study	105	Coursework and individual reading		
Lab time	4	2 x 2hr Science Lab investigations		
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100		
		hours, etc)		

Category	Element	Component Name	Component weighting	<i>Comments</i> Include links to learning objectives
Written exam	T1	In Class Test	100%	LO3, LO4
Coursework	C1	Engineering Problem Assignment	100%	LO1, LO2

Updated by: Tamal Barman Date: July 2022 Approved by: Alan Austin Date: July 2022

CREDITS: 20	FHEQ LEVEL: 5	JACS CODE: H130

PRE-REQUISITES:	CO-REQUISITES:	COMPENSATABLE:
None	None	Yes

SHORT MODULE DESCRIPTOR: (max 425 characters)

The development of 3D modelling techniques, Surface and Solid modelling within a dedicated 3D modelling package. Creating 3D visualisation and animations to communicate design concepts. Produce full sets of drawings, BOM's and manufacturing information. Analyse the stresses and strains on structures using FEA techniques to achieve an optimised design solution.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions]							
WRITTEN EXAMINATION		COURSEWORK		PRACTICE			
E1 (Formally scheduled)		C1		100%	P1		
E2 (OSCE)		C2			P3		
T1 (in-class test)		A1					

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

To provide the knowledge and understanding of the use of 3d modelling software in the use of design and analyse materials and structures for design.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of the module the learner will be expected to be able to:

- **LO3.** Use computer software to produce complex 3D models of engineering components.
- LO4. Analyse structures, stress strain and deflections using FEA techniques.
- **LO5.** Produce engineering drawings, BOMs and Manufacturing information to international standards.
- **LO10.** Apply tolerances; surface finish, dimensional and geometrical to engineering components.

DATE OF APPROVAL: May 2017	Academic Partnerships
DATE OF IMPLEMENTATION : September 2017	City College Plymouth
DATE(S) OF APPROVED CHANGE:	TERM: All Year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23	NATIONAL COST CENTRE: 143

MODULE LEADER: Martin Boulter OTHER MODULE STAFF:

Summary of Module Content

Design a solution to an engineering problem; produce a 3D Solid model using the appropriate software, and perform structural analysis using FEA techniques.

Produce to international standards Drawings, BOM's and Manufacturing information.

Produce a report detailing all design considerations, the design process and outcomes.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]				
Scheduled Activities	Hour	Comments/Additional Information		
	S			
Lecture	20	10 x 2hr lectures		
Guided Study	40	20 x 2hr sessions hands on Inventor time in CAD lab		
Tutorial	15	A mix of group and individual tutorial time		
Self-Study	125	Project work and individual reading		
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours, etc)		

Category	Element	Component Name	Component weighting	<i>Comments</i> Include links to learning objectives
Coursework	C1	Portfolio	100%	LO1, LO2, LO3, LO4

Updated by: Martin Boulter Date July 2022 Approved by: Alan Austin Date: July 2022

MODULE CODE: CITY2095	MODULE TITLE: Composites Materials for
	the Marine Industry

CREDITS: 20	FHEQ LEVEL: 5	JACS CODE: J610
PRE-REQUISITES:	CO-REQUISITES:	COMPENSATABLE:
None	None	Yes

SHORT MODULE DESCRIPTOR: (max 425 characters)

The module introduces the practical and theory of composites used in the marine industry and analyse the different manufacturing processes and the impact of these on the strength of the material

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions]						
WRITTEN EXAMINATION		COURSEWORK			PRACTICE	
E1 (Formally scheduled)		C1	60%	P1	40%	
E2 (OSCE)		C2		P3		
T1 (in-class test)		A1				

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

- To stimulate and widen the students knowledge of composites used within the marine industry
- Provide the student with the knowledge of polymer composites and an appreciation of how they can provide engineering solutions within the marine industry

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of the module the learner will be expected to be able to:

LO10. Analyse the different manufacturing processes and materials used within the marine industry.

LO11. Calculate the mechanical and physical properties of a polymer matrix.

LO12. Demonstrate the practical applications of composites used within the marine industry.

LO13. Analyse the quality assurance processes and the destructive and non-destructive testing of polymer composites.

DATE OF APPROVAL: May 2017	Academic Partnerships	
DATE OF IMPLEMENTATION: September 2017	City College Plymouth	
DATE(S) OF APPROVED CHANGE:	TERM: All year	

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

	ACADEMIC YEAR: 2022/23	NATIONAL COST CENTRE: 117
--	------------------------	---------------------------

MODULE LEADER: Martin Boulter OTHER MODULE STAFF:

Summary of Module Content

Analyse manufacturing methods, processes and materials

Calculate void contents, resin contents, resin fibre ratios and strength of laminate Testing processes visual, crucible, shearography, x-ray and other associated testing methods Practical applications associated with production, prototypes, renewable and military

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]				
Scheduled Activities	Hours	Comments/Additional Information		
Lecture	60	30 x 2hr Lectures		
Academic Support	15	A mix of Group and Individual Tutorials		
Directed Independent Study	30	Guided reading and homework		
Self-Study	85	Suggested reading and assignments		
Workshop time	10	5 x 2hr Practical sessions		
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100		
		hours, etc)		

Category	Element	Component Name	Component weighting	<i>Comments</i> Include links to learning objectives
Coursework	C1	Written Report	100%	LO1; LO3; LO4
Practice	P1	Practical	100%	LO2

Updated by: Martin Boulter Date: July 2022 **Approved by**: Alan Austin Date: July 2022

MODULE CODE: CITY 2		MODULE TITLE: Engine Technology and Marine Propulsion Systems		
CREDITS: 20	FHEQ LEVEL:5		JACS CODE: H333	
PRE-REQUISITES: None	CO-REQUISITES: None	Yes	NSATABLE:	
	RIPTOR: (max 425 chara	,		

This module investigates a number of engineering principles which underpin the design and operation of power plant and drive systems used in the Marine Industry. It includes some elements of thermodynamics, fluid mechanics, but emphasis is on the mechanics of engines and propulsion systems.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions]						
WRITTEN EXAMINATION		COURSEWORK			PRACTICE	
E1 (Formally scheduled)		C1		P1	50%	
E2 (OSCE)		C2		P3		
T1 (in-class test)	50%	A1				

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

To provide knowledge and understanding to support and develop a range of topics associated with plant engineering, modern engine technology, combustion processes, the art of diagnosis and marine propulsion systems.

ASSESSED LEARNING OUTCOMES: (additional guidance below) At the end of the module the learner will be expected to be able to:

LO6. engine systems.	Conceptualise different internal combustion			
LO7. control measures.	Analyse combustion processes, emissions and			
LO8.	Assess transmission systems and justify			
applications to different types of vessels. LO9. Apply Propeller design theory to individual 3d Propeller projects and justify its design to peers through seminars				

DATE OF APPROVAL: May 2017	Academic Partnerships	
DATE OF IMPLEMENTATION : September 2017	City College Plymouth	
DATE(S) OF APPROVED CHANGE:	TERM: All Year	

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23 NATIONAL COST CENTRE: 120
--

MODULE LEADER: Owais RajaOTHER MODULE STAFF:

Summary of Module Content

Engine Technology; Construction, 2 stroke, 4 stroke, gas turbine.

Combustion processes for Petrol, Diesel and Gas turbine, investigating the causes of emissions and the effects on BMEP, Engine Power and Torque. Thermodynamic calculations for Thermal Efficiency and Mechanical Efficiency on a range of engines.

Petrol and Diesel Fuel systems; Carburation, methods of injection, port injection, direct injection, electronic control.

cooling systems, exhaust systems,

engine diagnostics; mechanical testing, audible, measurements, tech spec and tolerances Electrical diagnostics, wiring diagrams, methods of evaluation.

Electronic diagnostics. ECU interrogation, K Line, CAN bus System Interaction.

Propulsion Systems; Gearbox construction, investigate different gearing solutions for given design scenarios, calculating gearing calculations, choosing the best type of gears, choosing materials, bearing loadings, etc.

Drive shafts; drive couplings, support systems, hull exit, sealing and maintaining a watertight hull. Propellers; Prop design, fixed pitch, variable pitch, podded and azimuthing propulsors, ducted propellers, waterjet propulsion. Propeller geometry, pitch, rake skew, section geometry and definition.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]				
Hour	Comments/Additional Information			
S				
40	20 x 2hr lectures			
15	A mix of group and individual tutorial time			
55	Identified independent study prior to seminars			
70	Coursework and individual reading			
10	5 x 2hr seminars based upon directed independent study			
10	5 x 2hr practical workshop investigations			
200	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours, etc)			
	Hour s 40 15 55 70 10 10			

Propeller performance

Category	Element	Component Name	Component weighting	<i>Comments</i> Include links to learning objectives
Written exam	T1	In Class Test	100%	LÓ1,LO2,
Practice	P1	Assessed Seminar	100%	LO3,LO4

Updated by: Owais Raja Date: July 2022 **Approved by**: Alan Austin Date: July 2022

FHEQ LEVEL: 5

MODULE CODE: CITY 2097	MODULE TITLE: Project

JACS CODE: H700

PRE-REQUISITES:	CO-REQUISITES:	COMPENSATABLE:
None	None	No

SHORT MODULE DESCRIPTOR:

CREDITS: 20

An integration of the skills and knowledge developed in other modules of the course within a major piece of work that allows the student to develop the ability to work individually; and with others, within a defined timescale and given constraints, to produce an acceptable and viable solution to an agreed brief.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions]						
WRITTEN EXAMINATION COURSEWORK PRACTICE					PRACTICE	
E1 (Formally scheduled)		C1	75%	P1	25%	
E2 (OSCE)		C2		P3		
T1 (in-class test)		A1				

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

This module develops students' ability to use the knowledge and skills they develop on an engineering programme to complete a realistic work project. It is designed to bring small groups of students together into a multi-disciplinary

team, coordinating their individual skills and abilities. This allows them to work, within a defined timescale and given constraints, to produce an acceptable and viable solution to an agreed brief. The module aims to integrate the skills and knowledge developed in other modules of the course within a major piece of work that reflects the type of performance expected in a modern engineering environment.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of the module the learner will be expected to be able to:

LO1. Present and agree specifications and project planning

LO2. Implement the project within agreed procedures and to specification.

LO3. Evaluate the project

LO4. Present a project evaluation.

DATE OF APPROVAL: May 2017	Academic Partnerships	
DATE OF IMPLEMENTATION: September 2017	City College Plymouth	
DATE(S) OF APPROVED CHANGE:	TERM: All Year	

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23 N

NATIONAL COST CENTRE: 115

MODULE LEADER: Martin BoulterOTHER MODULE STAFF:

Summary of Module Content

Identify requirements relevant to project type – plant layout, installation, product design, etc. Formulate plan of action, allocate responsibilities (for group projects), initiate a project log-book. Implementation: decision-making methods, quality and resource requirements, fitness for purpose, costs, brainstorming, mind mapping, log-book entries.

Evaluate critical analysis of the specification, Gantt charts, sequencing, scheduling, critical path methods, networking and application of Project Evaluation and Review Techniques (PERT). Present a project evaluation, including a written report, log-book record of all events and an oral presentation. The presentation should be made to known audiences (peer groups, tutors) and unknown audience (actual or simulated, customer or client).

SUMMARY OF TEACHING AND LEARNING				
Scheduled Activities	Hour	Comments/Additional Information		
	S			
Lecture	10	5 x 2hr lectures		
Formative assessments	4	4x1hr gateway reviews		
Practical workshop sessions	40	20 x 2hr practical workshop and development time		
Competition	3	3hr end of module competition		
Formal Presentation	1	1 hr dragons den presentation of project		
Independent Study	120	Individual and Group Research for Project related		
		problem solving.		
Tutorial	22	A mixture of group and individual tutorials		
Total	200			

Category	Element	Component Name	Component weighting	<i>Comments</i> Include links to learning objectives
Coursework	C1	Portfolio	100%	LO1, LO2, LO3.
Practice	P1	Formal Presentation	100%	LO4

Updated by: Martin Boulter Date: July 2022 Approved by: Alan Austin Date: July 2022

MODULE CODE: CITY2098	MODULE TITLE: Fluid mechanics and CFD
-----------------------	---------------------------------------

CREDITS: 20 FHEQ LEVEL: 5	JACS CODE: H141
---------------------------	-----------------

PRE-REQUISITES:CO-REQUISITES:COMPENSATABLE:NoneYes

SHORT MODULE DESCRIPTOR: (max 425 characters)

This module considers fundamental concepts of fluid static, continuity, viscosity and flow and provides the working principle of hydraulic systems and machinery.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions]						
WRITTEN EXAMINATION COURSEWORK PRACTICE						
E1 (Formally scheduled)	60%	C1	40%	P1		
E2 (OSCE)		C2		P3		
T1 (in-class test)		A1				

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

To consider the fundamental concepts and equations of fluid mechanics to understand behaviour of a body of fluid under different conditions. To provide knowledge of working principles of hydraulic systems.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of the module the learner will be expected to be able to:

LO14. Investigate properties of fluid and solve problems on pressure and fluid static

LO15. Analyse fluid continuity system

LO16. Study and analyse fluid Viscosity and pipe flow

LO17. Analyse hydraulic system

DATE OF APPROVAL: May 2017	Academic Partnerships	
DATE OF IMPLEMENTATION : September 2017	City College Plymouth	
DATE(S) OF APPROVED CHANGE:	TERM: All Year	

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23 NATIONAL COST CENTRE: 115

MODULE LEADER: Owais RajaOTHER MODULE STAFF:

Summary of Module Content

LO1: Investigate properties of fluid and solve problems on pressure and fluid static

Pressure, density, relative density, atmospheric pressure, absolute pressure, gauge pressure, manometer, barometer, Pascal's principle, Archimedes principle, Buoyancy and stability, Floatation, Centre of pressure, immersed surface, rectangular, circular immersed surface, inclined surface, thrust on immersed surfaces,

LO2: Analyse fluid continuity system

Mass and volume flow rate, equation of continuity, Bernoulli's equation, Application of Bernoulli's equation, Pressure and head loss, Darcy's formula, potential, velocity and pressure head.

LO3: Study and analyse fluid Viscosity and pipe flow

Shear stress in fluid, strain rate and velocity gradient, Newton's law of viscosity, Dynamic viscosity, kinematic viscosity, Newtonian and not Newtonian flow, real and ideal flow, steady and unsteady flow, Laminar and turbulent flow, Wetted perimeter and hydraulic radius, Reynolds number, critical velocity, Dimensional analysis, moody diagram.

LO4: Analyse hydraulic system

Hydraulic lift and press, hydraulic machines, fluid jets, Impact and power of a jet, turbo machines, Pelton wheel, Kaplan turbine, Reciprocating and centrifugal pump, Power and efficiency of pumps.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]			
Scheduled Activities	cheduled Activities Hour Comments/Additional Information		
	S		
Lecture	60	30 x 2hr lectures	
Tutorial	15	A mix of group and individual tutorial time	
Directed Independent Study	55	Identified independent study prior to seminars	
Self-Study	70	Coursework and individual reading	
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours, etc)	

Category	Element	Component Name	Component weighting	<i>Comments</i> Include links to learning objectives
Written exam	E1	Exam	100%	LO1, LO2
Coursework	C1	Assignment	100%	LO3, LO4

Updated by: Owais Raja Date: July 2022 Approved by: Alan Austin Date: July 2018

SECTION A: DEFINITIVE MODULE RECORD. Proposed changes must be

submitted via Faculty Quality Procedures for approval and issue of new module code.

MODULE CODE: CITY2101 MODULE TITLE: Further Naval Architecture & Regulatory Framework

CREDITS: 20	FHEQ LEVEL: 5	JACS CODE: H500
PRE-REQUISITES:	CO-REQUISITES:	COMPENSATABLE:
None	None	Yes

SHORT MODULE DESCRIPTOR: (max 425 characters)

To evaluate aspects of ships performance and regulatory requirements on the process of ship design and building.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions]								
WRITTEN EXAMI	С	COURSEWORK			PRACTICE			
E1 (Formally scheduled)		C1		50%	P1			
E2 (OSCE)		C2			P3			
T1 (in-class test)	50%	A1						

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

This module follows on from stage 1 Naval Architecture introducing the practical aspects and constraints of addressing ships performance and behaviour, whilst at the same time addressing the requirements of safety and pollution and other regulatory bodies.

It provides an understanding of how design choices can accommodate the two requirements simultaneously during build, operation and finally breaking the vessel at the end of its working life.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of the module the learner will be expected to be able to:

LO14. Evaluate different ship docking, launching and slipping methods.

LO15 Analyse basic ship manoeuvrability and seakeeping, how this is accommodated in ships design and trials.

LO16. Evaluate the roles of the classification societies, IMO, MCA, and Flag states. Describe the key requirements of SOLAS (Safety of Life at Sea).

LO17. Identify the environmental requirements of MARPOL (Marine Pollution) and the concepts of the 'Green Ship' requirements and procedures.

DATE OF APPROVAL: May 2017	Academic Partnerships
DATE OF IMPLEMENTATION: September 2017	City College Plymouth
DATE(S) OF APPROVED CHANGE:	TERM: All Year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23	NATIONAL COST CENTRE: 115
L	

MODULE LEADER: Martin Boulter OTHER MODULE STAFF:

Summary of Module Content

The theory and standard practice ship docking, undocking, launching and slipping methods. Understanding of the characteristics of sea-keeping and ship manoeuvrability.

Introduction into the roles and work of the maritime governing bodies including IMO, MCA, Classification societies, Flag States and other relevant bodies.

Evaluation of the how the requirements of ships performance and regulatory requirements are integrated into ship design and how the design cycle is developed.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]			
Scheduled Activities Hour Comments/Additional Information		Comments/Additional Information	
	S		
Lecture	20	10x2hours lectures	
Tutorial	10	10x1hr group or individual tutorials	
Directed Independent Study	124	Directed self study	
Guest lecturers	6	3x2hours lectures	
Case Study Seminars	18	9x2hrs Seminars	
Workshop time	22	11x2hrs workshop sessions	
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100	
		hours, etc)	

Category	Element	Component Name	<i>Component</i> weighting	<i>Comments</i> Include links to learning objectives
In Class Test	T1	Test	100%	LO1, LO2
Coursework	C1	Assignment	100%	LO3, LO4

Updated by: Martin Boulter Date: July 2022 Approved by: Alan Austin Date: July 2022