

PROGRAMME QUALITY HANDBOOK 2022-23

HNC Naval Architecture

Page 1 of 23

Welcome and Introduction to HNC Naval Architecture

Welcome to (HNC Naval Architecture) delivered at Kings Road Campus by City College Plymouth.

A Naval Architect is a professional engineer who is responsible for the design, construction and repair of ships, boats, other marine vessels and offshore structures, both civil and military, including:

•Merchant ships, Passenger/Vehicle Ferries, Warships, Submarines and underwater vehicles, Offshore Drilling Platforms, High Speed Craft, Workboats Yachts etc.

Some of these are among the largest and most complex and highly valued moveable structures produced by mankind. Without them to provide for the safe and efficient transport and recovery of the world's raw materials and products, modern society as we know it could not exist. This programme will develop a broad knowledge base of Naval Architecture, where applicable students will carry out practical design projects, using proven theory to solve engineering problems and study new technologies and engineering theory, engineering codes and specifications. During the course guided learning and varied dynamic assessments will provide essential knowledge and understanding which will lead into the final group project, where teams of engineers from different engineering disciplines will work together sharing their knowledge and compete in given challenges. Throughout many of the modules, you will use a range of computer based simulation and industry standard software. Delivery of certain modules will be within specialist workshop/ laboratory areas. Delivery is planned to be flexible to accommodate both our part time and full time students.

This programme has been designed to equip you with the skills and knowledge base required to work in your chosen specialism or other graduate opportunities. It is also a platform from which you can undertake additional vocational and academic qualifications.

This Programme Quality handbook contains important information including: The approved programme specification Module records

Note: The information in this handbook should be read in conjunction with the current edition of: Your Programme Institution & University Student Handbook which contains student support based information on issues such as finance and studying at HE

- o available at http://hemoodle.cityplym.ac.uk/course/view.php?id=3305
- Your Module, Teaching, Learning and Assessment Guide
- available at: <u>http://hemoodle.cityplym.ac.uk/course/view.php?id=3572</u>
- Plymouth University's Student Handbook
- available at: <u>https://www.plymouth.ac.uk/your-university/governance/student-handbook</u>

Programme Specification

Final award title
Level X Intermediate award title(s)
Level X Intermediate award title(s)
UCAS code
JACS code
Awarding Institution:
Teaching institution(s):
Accrediting body(ies)

HNC Naval Architecture N/A N/A N/A H508 University of Plymouth City College Plymouth

The course is not currently accredited however the intention is to apply for accreditation once we have our first round of graduates in Sept 2019.

The intention is to apply for accreditation of EngTec status through RINA and IMAREst.

Distinctive Features of the Programme and the Student Experience

This programme will develop a base knowledge of Naval Architecture theory as well as essential skills required in this field. Students will carry out a practical design project using proven theory to solve engineering problems.

Throughout many of the course's modules, you will use a range of industry standard software. This will be supplemented by practical activities to allow for evaluation of industry standard design.

Some modules will be delivered within specialist workshop/ laboratory areas.

Naval Architects can be responsible for the design, construction and maintenance of sea going vessels or structures within the marine environment. This HNC programme has been designed to develop your skills and knowledge within core subjects related to Naval Architecture such as Mathematics, Science and Materials. Along with these essential subjects included are topics covering the Managerial aspects of the industry, Naval Architecture and a Computer Aided Design Project. A HNC is an industry recognised qualification which could lead to further study within Higher Education or indeed a promotion within an existing place of work. Delivery of this programme will be at our Kings Road Campus utilising the engineering facilities and the new STEM centre.

Relevant QAA Subject Benchmark Group(s)

The subject benchmark statement (2015)1 defines the academic standard expected of graduates with an engineering degree. The defined learning outcomes are those published by the Engineering Council in the UK-SPEC UK standard for professional engineering competence www.engc.co.uk Third edition₂, the QAA Quality Code₃ and the SEEC Higher Education Level Discriptors₄

- 1. <u>http://www.qaa.ac.uk/en/Publications/Documents/SBS-engineering-15.pdf</u>
- 2. http://www.engc.org.uk/engcdocuments/internet/Website/UK-SPEC%20third%20edition%20(1).pdf
- 3. http://www.qaa.ac.uk/AssuringStandardsAndQuality/quality-code/Pages/default.aspx
- 4. http://www.seec.org.uk/wp-content/uploads/2016/07/SEEC-descriptors-2016.pdf

Programme Structure

Full Time HNC

Stage 1					
Module Code	Module Title	No. of Credits	Core / Optional		
CITY1077	Engineering Mathematics	20	Core		
CITY1078	Engineering Science 1	20	Core		
CITY1091	Engineering Materials	20	Core		
CITY1092	CAD Techniques & Design	20	Core		
CITY1093	Naval Architecture	20	Core		
CITY1099	Management Techniques in Naval Architecture	20	Core		

	Stage 1					
Module Code	Module Title	No. of Credits	Core / Optional			
CITY1077	Engineering Mathematics	20	Core			
CITY1078	Engineering Science 1	20	Core			
CITY1091	Engineering Materials	20	Core			
CITY1092	CAD Techniques & Design	20	Core			
Stage 2						
CITY1093	Naval Architecture	20	Core			
CITY1099	Management Techniques in Naval Architecture	20	Core			

Programme Aims

This programme aims to:

- 1. Develop engineering knowledge and understanding to apply technical and practical skills.
- 2. Provide an opportunity to 'contribute towards design' via practical and project-based work.
- 3. Provide an opportunity for 'accepting and exercising personal responsibility.'
- 4. Provide an opportunity to use effective communication and interpersonal skills.

Programme Intended Learning Outcomes

Programme ILOs have been adapted from UK-SPEC UK STANDARD FOR PROFESSIONAL ENGINEERING COMPETENCE Engineering Technician www.engc.org.uk Third edition

Knowledge and understanding

On successful completion graduates should have developed:

- 1) The ability to review and select appropriate techniques, procedures and methods to undertake tasks.
- 2) The ability to use appropriate scientific, technical or engineering principles.

Cognitive and intellectual skills

On successful completion graduates should have developed:

1) The ability to identify problems and apply appropriate methods to identify causes and achieve satisfactory solutions.

2) The ability to identify, organise and use resources effectively to complete tasks, with consideration for cost, quality, safety, security and environmental impact.

Key and transferable skills

On successful completion graduates should have developed the ability to:

1) Use oral, written and electronic methods for the communication of technical and other information.

Employment related skills

On successful completion graduates should have developed:

1) Good student centred learning skills which will promote lifelong learning and a commitment to continuing professional development to achieve flexibility within the work environment.

Practical skills

On successful completion graduates should have developed:

1) Undertake engineering work in a way that contributes to sustainable development.

Admissions Criteria, including APCL, APEL and DAS arrangements

All applicants must have GCSE (or equivalent) Maths and English at Grade C or above or Grade 4 and above on the new grading structure.

Entry Requirements for HNC Na	Entry Requirements for HNC Naval Architecture					
A-level/AS-level	Normal minimum entry requirements are 48 on new UCAS Tariff at A-level to include Grade D in Maths or Physics					
BTEC National Diploma/QCF Extended Diploma	Candidates are interviewed before an offer is made. But an equivalent of 48 UCAS points in an Engineering Subject					
Access to Higher Education at level 3	Candidates are interviewed before an offer is made. Pass an Access to HE Diploma in Science with an equivalent of 48 UCAS points					
Welsh Baccalaureate	Normal minimum entry requirements are an equivalent of 48 on new UCAS Tariff include Maths, Physics or Engineering					
Scottish Qualifications Authority	Normal minimum entry requirements are an equivalent of 48 on new UCAS Tariff include Maths, Physics or Engineering					
Irish Leaving Certificate	Normal minimum entry requirements are an equivalent of 48 on new UCAS Tariff include Maths, Physics or Engineering					
International Baccalaureate	Normal minimum entry requirements are an equivalent of 48 on new UCAS Tariff include Maths, Physics or Engineering					
Non Standard Qualifications with experience	All non-standard applicants are interviewed by the tutor and screened centrally to ensure impartial oversight.					

Progression criteria for Final and Intermediate Awards

Students who successfully complete the HNC may progress to:

- City College Plymouth's FdSc Marine Engineering or FdSc Naval Architecture.
- Plymouth University's BSc Marine & Composites year 2
- Plymouth University's BEng Marine Tech year 1(Students must score above 60% overall & 60% in maths)

Exceptions to Regulations

N/A

Transitional Arrangements

There is currently no HNC provision in this area. All new students from September 2017 will enrol on the completely new structure.

Mapping and Appendices:

ILO's against Modules Mapping

Please see appendix 13.1

Assessment against Modules Mapping

Please see appendix 13.2

Skills against Modules Mapping

Please see appendix 13.3

	LEVEL 4					
FHEQ Descriptors	Subject Benchmark(s)	Programme Aims	Programme Outcomes	Core Modules linked to outcomes		
Students will have demonstrated: Knowledge of the underlying concepts and principles associated with their areas of study;	A Use engineering knowledge and understanding to apply technical and practical skills.	1. Develop engineering knowledge and understanding to apply technical and practical skills.	8.1.1) The ability to review and select appropriate techniques, procedures and methods to undertake tasks.8.1.2) The ability to use appropriate scientific, technical or engineering principles.	CITY1077, CITY1078, CITY1091, CITY1092, CITY1093, CITY1099.		
Ability to evaluate and interpret these within the context of that area of study;	B) Contribute to the design, development, manufacture, construction, commissioning, operation or maintenance of products, equipment, processes, systems or services.	 Develop engineering knowledge and understanding to apply technical and practical skills. Provide an opportunity to 'contribute towards design' via practical and project based work. 	 8.1.1) The ability to review and select appropriate techniques, procedures and methods to undertake tasks. 8.1.2) The ability to use appropriate scientific, technical or engineering principles. 8.2.1) The ability to identify problems and apply appropriate methods to identify causes and achieve satisfactory solutions. 8.2.2) The ability to identify, organise and use resources effectively to complete tasks, with consideration for cost, quality, safety, security and environmental impact. 	CITY1077, CITY1078, CITY1091, CITY1092, CITY1093, CITY1099.		
Ability to present, evaluate and interpret qualitative and quantitative data;	D) Use effective communication and interpersonal skills.	1. Develop engineering knowledge and understanding	8.2.2) The ability to identify, organise and use resources effectively to complete tasks,	CITY1077, CITY1078, CITY1091, CITY1093.		

Page **7** of **23** University of Plymouth Academic Partnerships Programme Quality Handbook UK

		to apply technical and practical skills. 4. Provide an opportunity to use effective communication and interpersonal skills.	with consideration for cost, quality, safety, security and environmental impact. 8.3.1) Use oral, written and electronic methods for the communication of technical and other information.	
Students will be able to: Evaluate the appropriateness of different approaches to solving problems related to their area of study;	 A) Use engineering knowledge and understanding to apply technical and practical skills. B) Contribute to the design, development, manufacture, construction, commissioning, operation or maintenance of products, equipment, processes, systems or services. 	 Develop engineering knowledge and understanding to apply technical and practical skills. Provide an opportunity to 'contribute towards design' via practical and project based work. Provide an opportunity for 'accepting and exercising personal responsibility.' Provide an opportunity to use effective communication and interpersonal skills. 	 8.1.1) The ability to review and select appropriate techniques, procedures and methods to undertake tasks. 8.1.2) The ability to use appropriate scientific, technical or engineering principles. 8.2.1) The ability to identify problems and apply appropriate methods to identify causes and achieve satisfactory solutions. 8.2.2) The ability to identify, organise and use resources effectively to complete tasks, with consideration for cost, quality, safety, security and environmental impact. 	CITY1077, CITY1078, CITY1091, CITY1093.
Communicate the results of their study accurately and reliably and with structured and coherent argument	D) Use effective communication and interpersonal skills.	4. Provide an opportunity to use effective communication and interpersonal skills.	8.3.1) Communicate ideas and information; through verbal and written forms using appropriate terminology and presentation of data.	CITY1078, CITY1091, CITY1092, CITY1093, CITY1099.
Undertake further training and develop new skills within a structured and managed environment	E) Make a personal commitment to an appropriate code of professional conduct, recognising obligations to society, the profession and the environment.	3. Provide an opportunity for 'accepting and exercising personal responsibility.'	8.4.1) Good student centred learning skills which will promote lifelong learning and a commitment to continuing professional development to achieve flexibility within the work environment.	CITY1077, CITY1078, CITY1091, CITY1092, CITY1093, CITY1099.

Page **8** of **23** University of Plymouth Academic Partnerships Programme Quality Handbook UK

Students will also have: The qualities and transferable skills necessary for employment requiring the exercise of some personal responsibility	C) Accept and exercise personal responsibility.	 Provide an opportunity to 'contribute towards design' via practical and project based work. Provide an opportunity for 'accepting and exercising personal responsibility.' 	 8.4.1) Good student centred learning skills which will promote lifelong learning and a commitment to continuing professional development to achieve flexibility within the work environment. 8.5.1) Undertake engineering work in a way that contributes to sustainable development. 	CITY1077, CITY1078, CITY1091, CITY1092, CITY1093, CITY1099.
---	---	---	---	---

Appendix 13.2 Assessment against modules Map

	CITY1077 Engineering Mathematics (Core)	CITY1078 Engineering Science 1 (Core)	CITY1091 Engineering Materials (Core)	CITY1092 CAD Techniques and Design (Core)	CITY1093 Naval Architecture (Core)	CITY1099 Management Techniques in Naval Architecture (Core)
Essay						
Report						٥
Engineering Problem Assignment	Ο					
Portfolio						
Exam		0				
In Class Test						
Practical						
Presentation						0

Appendix 13.3 Skills against modules Map

	CITY1077 Engineering Mathematics (Core)	CITY1078 Engineering Science (Core)	CITY1091 Engineering Materials (Core)	CITY1092 CAD Techniques and Design (Core)	CITY1093 Naval Architecture (Core)	CITY1099 Management Techniques in Naval Architecture (Core)
Essay Writing			0			
Report Writing			0	0		0
Project Planning / Management						
Research		0			0	
IT Skills			0	0		٥
Team Work					0	
Evaluation						0
Data Analysis					0	0

Additional Guidance for Learning Outcomes:

To ensure that the module is pitched at the right level check your intended learning outcomes against the following nationally agreed standards

• Framework for Higher Education Qualifications

http://www.gaa.ac.uk/Publications/InformationAndGuidance/Documents/FHEQ08.pdf

- Subject benchmark statements http://www.qaa.ac.uk/ASSURINGSTANDARDSANDQUALITY/SUBJECT-GUIDANCE/Pages/Subject-benchmark-statements.aspx
- SEEC level descriptors <u>http://www.seec.org.uk/academic-credit/seec-credit-level-descriptors-2010</u> (scroll to pdf link at bottom of page)
- Professional, regulatory and statutory (PSRB) accreditation requirements (where necessary e.g. health and social care, medicine, engineering, psychology, architecture, teaching, law)
- QAA Quality Code <u>http://www.qaa.ac.uk/AssuringStandardsAndQuality/quality-code/Pages/default.aspx</u>

Page **11** of **23** University of Plymouth Academic Partnerships Programme Quality Handbook UK

Module Records

SECTION A: DEFINITIVE MODULE RECORD. Proposed changes must be

submitted via Faculty Quality Procedures for approval and issue of new module code.

MODULE CODE: CITY1077

MODULE TITLE: Engineering Mathematics

CREDITS: 20FHEQ LEVEL: 4JACS CODE: G160

PRE-REQUISITES: NCO-REQUISITES: NCOMPENSATABLE: Y

SHORT MODULE DESCRIPTOR:

To develop the student's mathematical ability and to apply principles to the solution of engineering problems and to make use of mathematical computer based packages.

ELEMENTS OF ASSESSMENT							
WRITTEN EXAMINATION COURSEWORK PRACTICE							
E1 (Formally scheduled)	50%	C1	50%	P1			
E2 (OSCE)		C2		P3			
T1 (in-class test)		A1					

SUBJECT ASSESSMENT PANEL: Technology

Professional body minimum pass mark requirement: n/a

MODULE AIMS:

- To gain a solid foundation in algebra, trigonometry, functions and calculus in order to associate and recognise the importance of mathematics in the analysis of engineering problems
- To develop mathematical problem solving simultaneously with other science and engineering modules.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of a module the learner will be expected to be able to:

- LO1. recognise the essential application of mathematical techniques to solve engineering problems
- LO2. apply exact mathematical methods to analyse and solve problems of an engineering and scientific nature
- LO3. use complex number theory in practical engineering applications
- LO4. understand a variety of techniques of differential and integral calculus and their associated applications in engineering

DATE OF APPROVAL: May 2017	FACULTY/OFFICE: Academic Partnerships
DATE OF IMPLEMENTATION: Sept 2017	SCHOOL/PARTNER: City College Plymouth
DATE(S) OF APPROVED CHANGE:	TERM: All Year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23 NATIONAL COST CENTRE: 122

MODULE LEADER: Owais RajaOTHER MODULE STAFF: N/A

Summary of Module Content

Revision of Algebra and Arithmetic

Basic number and arithmetic operations, algebraic techniques including evaluation of formula, rearranging formula, solving simple equations, laws of logarithms, laws of indices, etc. These skills will be built upon throughout the delivery of each individual topic in this module.

Trigonometric functions and graphs

Simple trigonometric functions of sine, cosine, tangent and hyperbolic functions of sinh⁻¹, cosh⁻¹ and tanh⁻¹. The applications of these functions in engineering including vectors and waveform combination.

Complex numbers

Addition, subtraction, multiplication and division of complex numbers in Polar and Cartesian form. The Argand diagram. The modulus and argument. Applications in engineering.

Differential Calculus

Basic differentiation techniques of polynomial, trigonometric, exponential and logarithmic functions. Further techniques including the product, quotient and chain rules. Engineering applications to optimisation and higher order differentials.

Integral calculus

Basic integration techniques of polynomial, trigonometric and exponential functions. Further techniques including integration by parts and substitution. The methodical applications of definite and indefinite integration with and without engineering scenarios including the interpretation of areas under a curve.

MODULE CODE: CITY1078 MODULE TITLE: Engineering Science 1

CREDITS: 20

FHEQ LEVEL: 4

JACS CODE: H100

PRE-REQUISITES: N CO-REQUISITES: N COMPENSATABLE: Y

SHORT MODULE DESCRIPTOR:

An introduction to mechanical principles, energy transfer and AC electrical theory. Mechanical principles including solid mechanics, statics, dynamics and mechanical vibrations. Modes of heat transfer and energy losses. Electrical principles and single phase AC theory.

ELEMENTS OF ASSESSMENT							
WRITTEN EXAMINATION COURSEWORK PRACTICE							
E1 (Formally scheduled)	50%	C1	50%	P1			
E2 (OSCE)		C2		P3			
T1 (in-class test)		A1					

SUBJECT ASSESSMENT PANEL: Technology

Professional body minimum pass mark requirement: n/a

MODULE AIMS:

- To investigate the fundamental scientific principles which underpin the design and operation of engineering systems.
- To give a mechanical and electrical overview which will provide the basis for further study in specialist areas of engineering.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of a module the learner will be expected to be able to:

- LO1. Demonstrate an understanding of basic static and dynamic mechanical systems
- LO2. Investigate energy transfer in thermal and fluid systems
- LO3. Recognise and recall how DC theory relates to simple electrical machines

LO4. Show knowledge and awareness of the fundamental principles of single phase AC theory

DATE OF APPROVAL: May 2017	FACULTY/OFFICE: Academic Partnerships
DATE OF IMPLEMENTATION: Sept 2017	SCHOOL/PARTNER: CCP
DATE(S) OF APPROVED CHANGE:	TERM: All Year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23

NATIONAL COST CENTRE: 114

MODULE LEADER: Owais RajaOTHER MODULE STAFF:

Summary of Module Content

Statics and Dynamics: SF and BM, bending stresses. Torsion . Uniform acceleration linear and angular. Newton's laws of motion, mass moment of inertia, kinetic energy, effects of friction. Vibrations, SHM, forcing and damping. Energy Transfer: Heat transfer: conduction, convection, radiation, thermal conductivity, forced convection, black and grey body radiation. insulated surfaces. Viscosity: boundary layer formation, laminar and turbulent flow, pressure loss in pipes. Energy losses: dynamic viscosity, power loss in bearings. pipe friction losses. Electrical Principles: Conductors, insulators, voltage and current. Ohm's law, Kirchhoff's law. Power: Electro-magnetic induction, transformers, Lenz's and Faraday's laws. Generator and motor principles. Single Phase AC theory: Non-resonant circuits: R-C-L circuits; Argand diagrams. Resonant circuits, L-C series and parallel, resonant frequency, Power factor correction, Complex waveforms: graphical analysis, odd and even-harmonics, phase shift, non-linear characteristics.

SUMMARY OF TEACHING AND LEARNING			
Scheduled Activities	Hours	Comments/Additional Information	
Lecture / Lab time	60	30 x 2hr sessions	
Tutorial	15	30 x 1hr	
Independent Study	125	A mixture of guided study and self-study.	
Total	200		

Category	Element	Component Name	Component weighting	Comments Include links to learning objectives
Written exam	E_	End of Module Examination	100%	LO1, LO2
Coursework	C_	Assignment (Report on in class experiments)	100%	LO3, LO4

Updated by: Tamal Barman Date: July	Approved by: Lance Chatfield Date: July 2022
2022	

MODULE CODE: CITY1091 MODULE TITLE: Engineering Materials

CREDITS: 20 FHEQ LEVEL: 4 JACS CODE: J500

PRE-REQUISITES: None CO-REQUISITES: None COMPENSATABLE: Yes

SHORT MODULE DESCRIPTOR: (max 425 characters)

Study of Material structure. Appreciation of material properties. Understanding of manufacturing and design considerations for the use of different materials.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions}						
WRITTEN EXAMINATION COURSEWORK PRACTICE						
E1 (Formally scheduled)		C1	100%	P1		
E2 (OSCE)		C2		P3		
T1 (in-class test)		A1				

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

To develop students' understanding and knowledge of basic manufacturing and materials technology, enabling them to appreciate why an understanding of the relationships between processing, structure, and properties is a key element in engineering.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of the module the learner will be expected to be able to:

LO1. Understand the effects of material structure on material properties.

LO2. Appreciate the effect of material choice on manufacturing procedures.

LO3. Describe the effects of processing on structure and properties of engineering materials.

LO4. Carry out tensile testing and interpret the results.

DATE OF APPROVAL: May 2017	Academic Partnerships
DATE OF IMPLEMENTATION: September 2017	City College Plymouth
DATE(S) OF APPROVED CHANGE:	TERM: All year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23 NATIONAL COST CENTRE: 117

MODULE LEADER: Tamal Barman OTHER MODULE STAFF:

Summary of Module Content

Shaping processes (solidification processes): mechanics, engineering analysis and practice of metal casting, and plastic moulding.

Shaping processes (bulk deformation processes): mechanics, engineering analysis and practice of rolling, forging, extrusion, bar and wire drawing

Basic engineering metrology including measuring instruments and gauges for linear and angular dimensions, Investigate the feasibility of replacing metal with composite substitutes, Investigate the properties of different composite structures and layup processes.

Properties of materials. Interpretation of stress-strain curves.

Practical measurement of mechanical properties.

Qualitative description of major differences between generic classes of materials in terms of their microstructure. Influence of atomic bonding on properties. Cast structures and defects in metals. Types of polymers and additives. Polymer glass transition temperature and melting point.

Property modification techniques; relationship between structure, processing, heat treatment, and properties. Metals: plastic deformation; hot and cold working; micro defects and their influence. Polymers: drawing and moulding; directionality of properties; influence of strain rate. Alloying: use of phase equilibrium diagrams in heat treatment; types of alloy. Properties, structure, and uses of

the plain carbon steels and the major non-ferrous alloys.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]				
Scheduled Activities	Hours	Comments/Additional Information		
Lecture	26	26x1hr lectures		
Supported Study	16	16x1hr supported engineering problems and lab reporting		
Workshop activities	10	Hands on practical activities		
Directed Independent Study	20	Identified independent study		
Self-Study	105	Coursework and individual reading		
Lab Session	8	4x2hr lab sessions		
Tutorial	15	A mix of individual and group tutorials		
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours, etc)		

Category	Element	Component Name	Component weighting	Comments Include links to learning objectives
Coursework	C1	Lab report	50%	LO1, LO2
		Essay	50%	LO3, LO4

Updated by: Tamal Barman Date: July 2022 Approved by: Lance Chatfield Date: July 2022

MODULE CODE: CITY 1092 MODULE TITLE: CAD Techniques and Design

CREDITS: 20 FHEQ LEVEL:4

JACS CODE: H130

PRE-REQUISITES: None CO-REQUISITES: None COMPENSATABLE: Yes

SHORT MODULE DESCRIPTOR: (max 425 characters)

An Introduction into CAD in the Design Process, progressing swiftly through 2D draughting to explore 3D conceptual design and visualisation. During this module, students will take part in a relevant work based design project.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions]						
WRITTEN EXAMINATION COURSEWORK PRACTICE						
E1 (Formally scheduled)		C1	100%	P1		
E2 (OSCE)		C2		P3		
T1 (in-class test)		A1				

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

Investigation of how formal draughting forms a corner stone of the design process

Practice of the skills necessary to produce and interpret drawings and computer models to British Standards

Experimentation in to the use of 3D visualisation as an engineering tool

Introduce Design techniques and carry out a work based design project.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of the module the learner will be expected to be able to:

LO1. Produce 2D detail and assembly drawings and 3D wireframe, surface and solid model using an industry standard CAD package to British Standards.

LO2. Produce rendered and animated visualisations to present to employers

LO3. Formulate, implement, evaluate and present a work based design project

LO4. Report to employers on the sustainability and ecology in design and the product life cycle

DATE OF APPROVAL: May 2017	Academic Partnerships
DATE OF IMPLEMENTATION: Sept 2017	City College Plymouth
DATE(S) OF APPROVED CHANGE:	TERM: All year
DATE OF IMPLEMENTATION: Sept 2017 DATE(S) OF APPROVED CHANGE:	TERM: All year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23

NATIONAL COST CENTRE: 143

MODULE LEADER: Martin Boulter OTHER MODULE STAFF:

Summary of Module Content

CAD & Drawings in the design process

Drawing standards and formats

The use of 2D CAD drawing and editing commands

Conceptual Design and 3D CAD

3D Wireframe, Surface and Solid Modelling commands

3D Visualisation

Sustainability and ecology in design and the product life cycle.

Material and process selection tools. Functionality, component simulation (free body diagrams, etc.) Design calculation tools - spread sheets. The design process - specifying, creating and evaluating ideas, developing and documenting. Working in a team. System design - team working.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]				
Scheduled Activities	Hours	Comments/Additional Information		
Lecture	20	10 x 2 hr lectures		
Practical Sessions	40	Application of techniques and methods learnt		
Tutorial	15	A mixture of group and personal tutorials		
Directed Independent Study	125	Working in groups and independently on their Projects		
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours, etc)		

Category	Element	Component Name	Component weighting	Comments Include links to learning objectives
Coursework	C1	Portfolio of Evidence Report	100%	LO1, LO2, LO3 LO4

Updated by: Martin Boulter Date: July 2022	Approved by: Lance Chatfield Date: July
	2022

MODULE CODE: CITY 1093 MODULE TITLE: Navai Architecture

CREDITS: 20	FHEQ LEVEL: 4	JACS CODE: H500	

PRE-REQUISITES:	CO-REQUISITES:	COMPENSATABLE:
None	None	Yes

SHORT MODULE DESCRIPTOR: (max 425 characters)

The module introduces the theory of ship stability and the interaction between a vessel, its cargo and counteracting the effects

ELEMENTS OF ASSESS	/IENT [Us	e HESA KIS defini	tions}		
WRITTEN EXAMINATION		COURSEWORK		PRACTICE	
E1 (Formally scheduled)		C1		P1	30%
E2 (OSCE)		C2		P3	
T1 (in-class test)	70%	A1			

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

- To stimulate and widen the student's knowledge of Naval Architecture
- To provide the student with the knowledge and abilities to research the effects of ship stability to safely operate.

ASSESSED LEARNING OUTCOMES: (additional guidance below) At the end of the module the learner will be expected to be able to: LO5 Explain and calculate trim and stability at small and large angles of heel. LO6 Analyse and calculate the effects of flooding on a ships trim and stability including countermeasures

LO7 Explain the principles of dry docking and slipping

Demonstrate the theory and practical application of a ship inclining experiment

DATE OF APPROVAL: 10 May 2017	Academic Partnerships
DATE OF IMPLEMENTATION: September 2017	City College Plymouth
DATE(S) OF APPROVED CHANGE:	TERM: All year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23 NATIONAL COST CENTRE: 115

MODULE LEADER: Martin Boulter OTHER MODULE STAFF:

Summary of Module Content

Ship stability terminology, distribution of volume, weight and buoyancy and associated coefficients, the use of data and calculations to identify a ships stability, changes of trim longitudinal and transversely due to loading and unloading. Calculate changes in draft and trim due to bilging and compartment flooding and the effect on a vessels stability

The theory of dry docking and slipping and the standard practices, the theory and practical applications of the inclining experiment and the associated calculations

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]				
Scheduled Activities	Hours	Comments/Additional Information		
Lecture	60	30 x 2hr Lectures		
Tutorial	15	a mix of group and individual tutorials		
Directed Independent Study	35	Research tasks		
Self-Study	80	Assignment and reading		
Workshop time	10			
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits =		
		100 hours, etc)		

Category	Element	Component Name	Component weighting	Comments Include links to learning objectives
Written Exam	T1	Open book test	100%	LO1; LO2; LO3
Practice	P1	LAB	100%	LO4

Updated by: Martin Boulter	Approved by: Lance Chatfield
Date: July 2022	Date: July 2022

MODULE CODE: CITY109	9	MODULE TITLE: Management Techniques in Naval Architecture			
CREDITS: 20 FF		IEQ LEVEL: 4	ļ	JACS CODE: N210	
PRE-REQUISITES: None	CO-RI None	EQUISITES:	COMPE	NSATABLE: Yes	

SHORT MODULE DESCRIPTOR: On completion of this unit to appraise the main techniques that improve organisations' operations.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions]						
WRITTEN EXAMIN	IATION	COURSEWORK		PRACTICE		
E1 (Formally scheduled)		C1	60%	P1	40%	
E2 (OSCE)		C2		P3		
T1 (in-class test)		A1				

SUBJECT ASSESSMENT PANEL Group to which module should be linked: Technology

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

Students will be able to explain how application of management techniques can improve the plans, designs, processes or systems for the optimisation of operational activity within an organisation and throughout the supply chain.

ASSESSED LEARNING OUTCOMES: (additional guidance below)

At the end of the module the learner will be expected to be able to:

LO1 – Discuss contemporary management techniques used to improve and optimise operational activity, including the associated supply chains, within the field of naval architecture

LO2 – Apply financial analysis and planning control methods to naval architecture scenarios.

LO3 – Analyse the role of modern quality and performance management methods for delivering service excellence and value to the customer.

LO4 – Investigate the management challenges presented within the field of naval architecture as a result of increasing competitiveness, globalisation and environmental issues.

LO5 – Evaluate and communicate lean enterprise concepts applied to the naval architecture sector.

DATE OF APPROVAL: May 2017	Academic Partnerships
DATE OF IMPLEMENTATION September 2017	City College Plymouth
DATE(S) OF APPROVED CHANGE:	TERM: All Year

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2020/21 NATIONAL COST CENTRE: 18

MODULE LEADER: Tamal Barman OTHER MODULE STAFF:

Summary of Module Content

Operations management functions; input-transformation-output model; operations management within corporate strategic framework; functional relationship of operations management; challenges facing operations management – globalisation, environmental issues, knowledge management, technology; key performance objectives; design process; differing processes; process technologies; job design; work measurement; quality control; facility location; operations planning & control – scheduling, forecasting demand, JIT; project management; TQM.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]				
Scheduled Activities	Hours	ours Comments/Additional Information		
Lectures	30	30 x 1hr lectures		
Seminars	30	30 x 1hr seminars		
Self study	120	Reading, research, Sim Venture activities		
External Visit	3	Visit to manufacturer production line		
External Speakers	4	2 guest lectures		
Tutorials	13	Group and individual tutorials		
Total	200			

Category	Element	Component Name	Component weighting	Comments Include links to learning objectives
Coursework	С	Report	100%	LO1, LO2, LO3
Practice	Р	Presentation	100%	LO4, LO5

Updated by: Tamal Barman Date: July 2022 Approved by: Lance Chatfield Date: July 2022