

PROGRAMME QUALITY HANDBOOK 2023/24

BSc (Hons) Applied Computer Science

Page 1 of 37

- 1. Welcome and Introduction
- 2. Programme Specification
- 3. Module Records

The current situation with the COVID-19 pandemic means the College is having to constantly review how it operates with regards to its curriculum delivery. The health and wellbeing of staff, students and the general public is of the utmost importance to the College. While the College is planning for all students to be able to spend time at the Kings Road site, this will only happen in line with the most up-to-date guidance from the Government, Public Health England and the Health and Safety Executive. With this in mind, there will be some aspects of your course delivered using online methods and some in person. Our incredible teaching staff have adapted brilliantly to the virtual delivery of their courses and our students have found it easy to adapt to this new way of working.

This Programme Quality Handbook outlines the details of your course including delivery hours and assessment methods. The details within this handbook outline our 'best case scenario' plans, however, these will be subject to change in line with guidance.

We assure you that in-light of the current situation, we have made all reasonable efforts to enable students to complete their studies, for achievement to be reliably assessed and for qualifications to be awarded securely. We will continue to provide a high quality learning experience utilising technology solutions as required to accommodate a blended learning approach.

Students will be attending Classes for 3 hours per week based on the current guidelines and details of specific timings will be given at induction.

In the event of a second wave of Covid-19, a local, or a national lockdown, alternative arrangements for delivery will be put in place which will mainly focus around the use of online delivery of lectures, discussions, workshops, activities and tasks. Where a module is normally assessed via a practical demonstration and/or application of a skill or knowledge, assessments will be either be postponed to a later date, or if prolonged lockdown and/or social distancing measures do not allow face-to-face work then alternative means of assessment will be used as follows:

Possible Programme Assessment changes being undertaken:

Module CITY3111 Research Project

20% practical element (poster presentation) presentation to be conducted online. **Module CITY3112 High Performance Computing** 100% coursework no changes required **Module CITY3113 Project Management** 100% coursework no changes required **Module CITY3114 Machine Learning and AI** 40% practical element will be coursework **Module CITY3115 Bio-Inspired Computing** 30% exam will be held online using time constrained access to assessment and hand in folders. **Module CITY3116 Advanced Computer Forensics and Security** 40% practical element will be coursework

In the event another COVID outbreak affects the college, there will need to be practical/in-person elements of the programme assessment adapted to suit the COVID conditions. This has already been factored into the existing assessments to enable minor adaption to take place.

1. Welcome and Introduction to BSc (Hons) Applied Computer Science

Welcome to BSc (Hons) Applied Computer Science delivered at City College Plymouth.

This programme has been designed to equip you with the skills and knowledge base required to work in your chosen specialism or other graduate opportunities. It is also a platform from which you can undertake additional vocational and academic qualifications.

This Programme Quality handbook contains important information including:

- The approved programme specification
- Module records

Note: The information in this handbook should be read in conjunction with the current edition of:

- Your Programme Institution & University Student Handbook which contains student support based information on issues such as finance and studying at HE
- Your Module, Teaching, Learning and Assessment Guide available on your programme VLE
- Plymouth University's Student Handbook available at: https://www.plymouth.ac.uk/your-university/governance/student-handbook

1. Programme Specification

 Award Title: BSc (Hons) Applied Computer Science Intermediate Award: N/A UCAS code: 1002 JACS code: XXXX
 Awarding Institution: University of Plymouth

Teaching institution(s): City College Plymouth

3. Accrediting body(ies) N/A

4. Distinctive Features of the Programme and the Student Experience

This programme distinctively focuses on developing knowledge, skills and attributes for ethically applying computer science disciplines including machine learning and artificial intelligence to solve problems that arise for local and regional industries and sectors. There is a strong emphasis on the application of computer science within this program and the design of the BSc (Hons) Applied Computer Science includes topics where theory is taught and then applied to industry related problems in areas including pattern recognition, high performance computing and artificial intelligence. The students will have an opportunity to use the knowledge gained, to complete an individual project where the techniques studied will be applied to a relevant computer related problem. Thus growing a community of graduates to build the future for this sector in the region and beyond.

This programme, delivered by City College Plymouth, partnered with the University of Plymouth as the degree awarding institution, targets specifically the application of machine learning and data science within the wider Information Technology sector.

A Graduate who has studied the BSc (Hons) Applied Computer Science will be able to apply these skills to the tasks of modelling complex scenarios. This includes pattern recognition and the prediction and visualisations of these through the use of modern automated perception, reasoning and learning computer algorithms through leveraging high performance computing techniques.

The BSc (Hons) Applied Computer Science curriculum reflects modern developments and professional standards in Artificial Intelligence, Machine Learning and Computer Science. Teaching is informed by the research activity and the industry expertise of staff, including their close links with industry-leading companies including Nvidia Corporation, NASA, The Met Office, the UK Land Registry, and the Plymouth NHS Trust¹. That teaching integrates a wide spectrum of knowledge, including related aspects of physiology, philosophy, psychology, ethics, algorithms and data structures, logic and mathematics, hardware and networks, professional issues and software engineering. Combining those, with a wide range of technical and interpersonal skills, analysis and including computer programming, design, research. project management, report writing, presentation skills and enterprise, in order to specifically target the production of graduates who can apply aspects of computer science including machine learning and artificial intelligence to solve real-world problems.

The delivery of the BSc (Hons) Applied Computer Science is student centred and focused on equitability of opportunity, enabled by delivery to cohorts with a maximum of 16 students, and with both full-time and part-time routes and compact timetables that remain consistent across the academic year. Thus enabling students from varied backgrounds and employment situations to engage appropriately with their study. Those students will focus on project work and collaboration between students and with industry partners and clients. This provides a broad and immersive range of experiences for students and enhances their communication, collaboration and practical skills.

This BSc (Hons) Applied Computer Science, alongside the College's other computing programmes, is delivered in the 2017-built STEM (Science, Technology, Engineering and Maths) Centre on Kings Road, Plymouth. This modern building provides a stimulating and comfortable learning environment where students can find all the

¹ Specific industry links correct at the time of programme approval (2019)

hardware and software they need for their particular field of study, whilst sharing that environment with students studying in a range of science, creative and digital related subjects.

In addition to the new learning environment, computing students will have exclusive use of seven dedicated computing labs, and a research space. Five of the labs offer their own dedicated networking environments to allow for experimentation in networking, security and parallel programming, whilst the software suites offer the student a range of open source and proprietary software to enhance the practical side of their education. Continued procurement of dedicated AI equipment with significant computing power supports this programme, for example the planned² procurement of a dedicated AI workstation (Nvidia DGX-1 with V100) will have a potential of 1 Petaflops of computing power with 40,000 Cuda cores which the students will have time shared access to throughout the course of study. In addition to this an additional 200,000 Cuda Cores will be available from dedicated desktop computers equipped with GeForce RTX 2080 GPU's.

Students will have the opportunity to develop real solutions, for real clients. Alongside engaging with local and regional industry within the development of the BSc (Hons) Applied Computer Science, those industry partners also provide real-world problems for incorporation into assessment and also where students present their work to clients/sponsors and have the opportunity to then gain from reflecting on the work-based learning skills that provides.

Dedicated students of the BSc (Hons) Applied Computer Science will graduate as highly employable and enterprising individuals, who will be well prepared to also seek continued study to Masters or PhD if an academic future is desired.

² At the time of this programme's approval (2019)

5. Relevant QAA Subject Benchmark Group(s)

QAA Subject Benchmark for Computing (2016)

British Computing Society Guidelines on course accreditation information for universities and colleges (May 2018)

UK Engineering Council The Accreditation of Higher Education Programmes, UK Standard for Professional Engineering Competence, Third edition (May 2014)

Department for Digital, Culture, Media and Sport, UK Digital Strategy Policy Paper (2017)

ACM/IEEE Computing Curricula Recommendations

QAA Frameworks for Higher Education Qualifications (2014)

Industrial Advisory Partners: Digital Plymouth, Software Cornwall, the Digital Policy Alliance and a variety of local and national organisations, who have either directly or indirectly contributed to the Programme, these include NASA, Nvidia Corporation, Land Registry the NHS and the Met Office.

6.

7. Programme Structure for the BSc (Hons) Applied Computer Science (full-time) 2020/21

120 Level 6 Credits						
Semester 1						
Module Code	Module Title	Credits	Core/Optional	Mode of delivery (AY/ S1/ S2)		
CITY3111	Individual Project	40	Core	AY		
CITY3112	High Performance Computing	20	Core	S1		
CITY3113	Project Management	20	Core	S1		
Semester 2						
Module Code	Module Title	Credits	Core/Optional	Mode of delivery (AY/ S1/ S2)		
CITY3111	Individual Project	40	Core	AY		
CITY3114	Machine Learning and AI	20	Core	52		
CITY3115	Bio-Inspired Computing	20	Optional	52		
CITY3116	Advanced Computer Forensics and Security	20	Optional	S2		

8. Programme Structure for the BSc (Hons) Applied Computer Science (part-time) 2020/21

	Year 1 = 80 Level 6 Credits					
Semester 1						
Module Code	Module Title	Credits	Core/Optional	Mode of delivery (AY/ S1/ S2)		
CITY3112	High Performance Computing	20	Core	S1		
CITY3113	Project Management	20	Core	S1		
Semester 2		-				
Module Code	Module Title	Credits	Core/Optional	Mode of delivery (AY/ S1/ S2)		
CITY3114	Machine Learning and AI	20	Core	S2		
CITY3115	Bio-Inspired Computing	20	Optional	S2		
CITY3116	Advanced Computer Forensics and Security	20	Optional	S2		

	Year 2 = 40 Level 6 Credits					
Semester 1	-					
Module Code	Module Title	Credits	Core/Optional	Mode of delivery (AY/ S1/ S2)		
CITY3111	Individual Project	40	Core	AY		
Semester 2	Semester 2					
Module Code	Module Title	Credits	Core/Optional	Mode of delivery (AY/ S1/ S2)		
CITY3111	Individual Project	40	Core	AY		
		•		•		

9. Programme Aims

The BSc (Hons) in Applied Computer Science aims to:

- To provide a thorough academic grounding in the core subject matter of Computer Science, Machine Learning and Artificial Intelligence.
- To develop technical, professional and managerial skills through exposure to practical projects, emphasising communication as well as software design and development skills.
- To expose students to leading-edge research in Machine Learning and opportunities to do so with other topics such as Bio-Inspired computing
- To produce immediately employable graduates with an industrially relevant mix of knowledge, practical skills and self-motivation.
- Enable learners to make a contribution to the digital community in the region and beyond, both during and on completing the course
- To ensure graduates have a solid awareness of the ethical, legal and social contexts of Computing, Machine Learning and Artificial Intelligence.

10. Programme Intended Learning Outcomes

10.1 Knowledge and understanding

On successful completion graduates should have developed:

- 1. A knowledge and critical understanding of the computing discipline as a whole and its application
- 2. A knowledge and critical understanding of the principles of Artificial Intelligence, Machine Learning, Data Processing and Evolutionary Computing in a range of paradigms.
- 3. A knowledge and critical understanding of the role of project management in software design, development and testing.
- 4. Awareness of the legal and ethical associated responsibilities.
- 5. Ability to create appropriate solutions to computing challenges with an awareness of quality and sustained refinements.

10.2. Cognitive and intellectual skills

On successful completion graduates should have developed:

- 1. Their ability to learn independently from a range of academic and industry sources and apply that learning to new problems.
- 2. Their ability to analyse complex problems, evaluate and recommend solutions using professional judgement, with regard to risks, costs, benefits and codes of practice.

10.3. Key and transferable skills

On successful completion, graduates should have developed the ability to:

- 1. To communicate effectively in speaking, interview and interact productively with a client, present and defend a substantial piece of work, engage with others and respond effectively to questions.
- 2. To communicate effectively in writing, present a two-sided argument, expose technical information clearly, comprehend and summarise resource material with proper citation of sources.
- 3. To work both autonomously and as part of a team as appropriate.

10.4. Employment related skills

On successful completion graduates should have developed:

- 1. To demonstrate personal initiative, self-motivation, self-learning and problem-solving skills.
- 2. Their ability to research, develop and complete a practical problem-solving challenge with reference to appropriate industry standards.
- 3. Their understanding of the role of computer systems, software and algorithms in a variety of industry and public contexts.

10.5. Practical skills

On successful completion graduates should have developed:

- 1. To develop industrially relevant intelligent (software) systems
- 2. To research material from multiple published sources, comprehend and filter such material and from it synthesis theories, principles or designs pertinent to a practical, problem-solving project.

- 3. The ability to select and apply a variety of tools for the development of a software solution.
- 4. To create informative and professional documentation5. The ability to personally present information to others in a professional manner

11. Admissions Criteria, including APCL, APEL and DAS arrangements

Entry Requirements for BSc (Hons) Applied Computer Science			
Other HE qualifications	A FdSc in a relevant and appropriate subject or successful completion of the first two years of a related Bachelor's Degree. In addition applicants are required to complete Massive Open Online Courses (MOOCs) in subject specific areas including maths and programming. Applicants will also be required to attend an interview.		
Other Qualifications	Non-traditional candidates with alternative equivalent qualifications will be considered. Candidates without the above qualifications, but who can demonstrate relevant industry experience are encouraged to apply. In addition applicants are required to complete Massive Open Online Courses (MOOCs) in subject specific areas including maths and programming. Applicants will also be required to attend an interview.		
Direct Entry to Level 6	Students may enter at level 6 with a relevant HND or FdSc made up of 120 level 4 module credits and 120 level 5 module credits subject to the University of Plymouth APL regulations. In addition direct entry students are required to complete Massive Open Online Courses (MOOCs) in subject specific areas including maths and programming. Applicants will also be required to attend an interview.		
GCSE's required at grade 4 or above	Maths and English		
DAS Arrangements	Applicants should indicate any health conditions or impairments and associated access requirements and/or disabilities on the initial application form. City College Plymouth will undertake every reasonable effort to accommodate students through individual consultations.		

12. Progression criteria for Final and Intermediate Awards

As a BSc (Hons) programme, there is no requirement for an articulated progression route. However, a graduate from this programme would be able to progress to a Level 7 qualification in such areas as Computer Science and Computer Security. For example, graduates would be able to apply to progress onto the following Masters Level course:

MSc Computer Science Plymouth University

Module Records

UNIVERSITY OF PLYMOUTH MODULE RECORD

<u>SECTION A: DEFINITIVE MODULE RECORD</u>. Proposed changes must be submitted via Faculty/AP Quality Procedures for approval and issue of new module code.

 MODULE CODE: CITY3111
 MODULE TITLE: Individual Project

 CREDITS: 40
 FHEQ LEVEL: 6
 HECos CODE: 100962

 PRE-REQUISITES: NONE
 CO-REQUISITES: NONE
 COMPENSATABLE: No

 SHORT MODULE DESCRIPTOR: (max 425 characters)
 Example of the matching of the mat

The individual project gives students an opportunity to tackle a major applied computing related problem in an approved industrial related topic. Statistical methods applicable to the project will be included at the start of the course of study as well as the ethics involved. Students are expected to spend a minimum of 400 hours of time on their individual project. In addition, regular meetings with an allocated project supervisor will be scheduled for the duration of the individual project.

This practical assessment will take place in person and on-site at CCP as specified on the Assignment Brief. However, if at the time of the assessment, government guidelines on social distancing make this inappropriate then it will take place remotely online. Any changes will be communicated via the DLE.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions] – see <u>Definitions of Elements and</u> <u>Components of Assessment</u>

E1 (Examination)	C1 (Coursework)	80%	P1 (Practical)	20%	
E2 (Clinical	A1 (Generic				
Examination)	assessment)				
T1 (Test)					
SUBJECT ASSESSMENT PANEL to which module should be linked: BSc (Hons) Applied Computer					
Science					

Professional body minimum pass mark requirement: N/A

MODULE AIMS:

- 1. To enable the student to tackle a major applied computing related problem in an approved industrial related topic.
- 2. To provide an opportunity for the student to integrate many of the threads of their programme of study.

ASSESSED LEARNING OUTCOMES: (additional guidance below; please refer to the Programme Specification for relevant award/ programme Learning Outcomes.

At the end of the module the learner will be expected to be able to:

Assessed Module Learning Outcomes	Award/ Programme Learning Outcomes contributed to
LO1. Apply the student's knowledge and implementation skills to a project relevant to computer science and an understanding of research ethics and statistical methods.	8.1.1, 8.1.2, 8.1.3, 8.1.4
LO2. Identify an approved computing related problem that requires the application of methods and techniques that demonstrates the application of knowledge and understanding.	8.2.1, 8.2.2, 8.5.1

LO3. Manage a complex project that demonstrates personal initiative and effective decision making in an unpredictable context.		8.1.5, 8.3.3, 8.4.1, 8.5.3
LO4. Communicate effectively and critically evaluate all aspects of the project deliverables including the theoretical and methodological framework.		8.3.1, 8.3.2, 8.4.3, 8.5.4, 8.5.5
DATE OF APPROVAL: August 2019 FACULTY/		FFICE: Academic Partnerships

DATE OF APPROVAL: August 2019	FACULTY/OFFICE: Academic Partnerships
DATE OF IMPLEMENTATION: September	SCHOOL/PARTNER: CITY COLLEGE PLYMOUTH
2019	
DATE(S) OF APPROVED CHANGE:	SEMESTER: Semester 1 & 2
Notes:	

Additional Guidance for Learning Outcomes:

To ensure that the module is pitched at the right level check your intended learning outcomes against the following nationally agreed standards

- Framework for Higher Education Qualifications <u>http://www.qaa.ac.uk/publications/information-and-guidance/publication/?PubID=2718#.</u> <u>VW2INtJVikp</u>
- Subject benchmark statements <u>http://www.qaa.ac.uk/ASSURINGSTANDARDSANDQUALITY/SUBJECT-GUIDANCE/Pages/Subj</u> <u>ect-benchmark-statements.aspx</u>
- Professional, regulatory and statutory (PSRB) accreditation requirements (where necessary e.g. health and social care, medicine, engineering, psychology, architecture, teaching, law)
- QAA Quality Code <u>http://www.qaa.ac.uk/AssuringStandardsAndQuality/quality-code/Pages/default.aspx</u>

SECTION B: DETAILS OF TEACHING, LEARNING AND ASSESSMENT

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process. Some parts of this page may be used in the KIS return and published on the extranet as a guide for prospective students. Further details for current students should be provided in module guidance notes.

MODULE LEADER: Dr Andrew Watson	OTHER MODULE STAFE: Tomasz Bergier
ACADEMIC YEAR: 2022/23	NATIONAL COST CENTRE:

Summary of Module Content

- Learn specific technical skills required by a chosen topic and apply them to project work.
- Learn relevant project-related skills, including project management, ethics in research, knowledge of relevant research, statistical methods and the evaluation and production of project artefacts.
- Undertaking of an individual substantive project appropriate to Computing which has been approved by the project supervisor.
- Regular progress meetings with allocated project supervisor
- Presentation of an account of work in written form.
- Oral presentation of work.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]			
Scheduled Activities	Hours	Comments/Additional Information (briefly explain activities, including formative assessment opportunities)	
Lectures	15	Combined lecture/lab sessions (online)	
Directed Study	45	Combined lecture/lab sessions and individual scheduled meetings with a project supervisor throughout the year. (online)	
Student Self Study	340	Google classroom is the starting point for guidance in directed study with direction from project supervisor.	
Total	400	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours, etc.)	

SUMMATIVE ASSESSMENT

Element Category	Component Name	Component Weighting
Coursework	Dissertation on a chosen topic of applied computing	LO1, LO2, LO3 100%
Practical Viva voce oral presentation (Viva voce oral presentation online)		LO4 100%

REFERRAL ASSESSMENT

Element Category	Component Name	Component Weighting
Coursework	Dissertation on a chosen topic of applied computing	LO1, LO2, LO3 100%
Practical Viva voce oral presentation		LO4 100%

(Viva voce oral pr	resentation online)			
To be completed when presented for Minor Change approval and/or annually updated				
Updated by:Dr Andrew Watson	Approved by:			
Date: 04/09/2023	Date:			

UNIVERSITY OF PLYMOUTH MODULE RECORD

<u>SECTION A: DEFINITIVE MODULE RECORD</u>. Proposed changes must be submitted via Faculty/AP Quality Procedures for approval and issue of new module code.

MODULE CODE: CITY3112 MODULE TITLE: High-Performance Computing						
CREDITS: 20	FHEQ LEVE	FHEQ LEVEL: 6		HECos CODE: 100741		741
PRE-REQUISITES:	CO-REQUIS	ITES:		COMPEN	ISATABLE	: Yes
SHORT MODULE DESCRIF High Performance comp today's world of comput the development of sens subject area and an insigh ELEMENTS OF ASSESSME	PTOR: (max 425 charact uting is prevalent in a erisation. Some exam itive instrumentation sy nt into its applications. NT [Use HESA KIS define	ers) Il sectors (acade oles are weathen (stems. This mo (tions] – see <u>Defin</u>	emia, go r simular dule wil nitions o	overnment an tion, predictic I provide a gro <u>f Elements an</u>	nd industr on, and th ounding in nd	ry) in lat of n this
Components of Assessme	<u>nt</u>					
E1 (Examination)	C1 (Coursework)	100%	P1	(Practical)		
E2 (Clinical Examination)	A1 (Generic assessment)					
T1 (Test)						
 Be able to understand analysis and processe Be able to design para setups. Be able to implement programming using th Be able to employ a v Be able to document data processes. 	and analyse HPC princ s. allel programs and critic big data processes with he HPC system. ariety of testing technic and analyse the results	iples, a variety of ally evaluate the n a variety of clus ques for example of both the HPC	f HPC m se along stering n benchn system	ethods and bi gside a variety nethods and p narking. configurations	g data of HPC parallel s utilising	big
ASSESSED LEARNING OU Specification for relevant At the end of the module	TCOMES: (additional gu award/ programme Lea the learner will be expe	idance below; pl irning Outcomes ected to be able	ease ref to:	er to the Prog	ramme	
Assessed Module Learn	ing Outcomes	Award/ Pro	gramme to	Learning Out	tcomes	
LO1 Demonstrate a deep critically evaluate the pr computing and parallel of high performance and d	o understanding and inciples of cluster computing in terms of ata analytics.	8.1.2, 8.5.2				

LO2 Compare, critically evaluate and discuss competing methods through application in design.	8.2.1, 8.3.2
LO3 Implement parallel programming and clustering methods on high-performance computing and big data.	8.4.2
LO4 Implement the various testing techniques and benchmarking, verify and document the resulting learning and representations.	8.5.3

DATE OF APPROVAL: August 2019	FACULTY/OFFICE: Academic Partnerships	
DATE OF IMPLEMENTATION: September	SCHOOL/PARTNER: CITY COLLEGE	
2019	PLYMOUTH	
DATE(S) OF APPROVED CHANGE:	SEMESTER: Semester 1	
Notes:	•	

Additional Guidance for Learning Outcomes:

To ensure that the module is pitched at the right level check your intended learning outcomes against the following nationally agreed standards

- Framework for Higher Education Qualifications <u>http://www.qaa.ac.uk/publications/information-and-guidance/publication/?PubID=2718#.</u> <u>VW2INtJVikp</u>
- Subject benchmark statements <u>http://www.qaa.ac.uk/ASSURINGSTANDARDSANDQUALITY/SUBJECT-GUIDANCE/Pages/Subj</u> <u>ect-benchmark-statements.aspx</u>
- Professional, regulatory and statutory (PSRB) accreditation requirements (where necessary e.g. health and social care, medicine, engineering, psychology, architecture, teaching, law)

QAA Quality Code <u>http://www.qaa.ac.uk/AssuringStandardsAndQuality/quality-code/Pages/default.aspx</u>

SECTION B: DETAILS OF TEACHING, LEARNING AND ASSESSMENT

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process. Some parts of this page may be used in the KIS return and published on the extranet as a guide for prospective students. Further details for current students should be provided in module guidance notes.

ACADEMIC YEAR: 2022/2023	NATIONAL COST CENTRE:
MODULE LEADER: Tomasz Berg	ier OTHER MODULE STAFF:
 Summary of Module Content Programming languages and Compiler options and optim processors Execution profiling, timing to single-core and multi-core p Hardware architecture that Parallelization strategies, tas techniques Parallel programming for ex Testing and benchmarking for 	d programming-language extensions for HPC hizations for modern single-core and multi-core echniques, and benchmarking for modern processors meets industry standards sk parallelism, data parallelism, and work sharing ample master-slaves, or Cuda-Core. or HPC informed by industry standards
SUMMARY OF TEACHING AND LEA	ARNING [Use HESA KIS definitions]
Scheduled Hours	Comments/Additional Information (briefly explain activity)

Scheduled	Hours	Comments/Additional Information (briefly explain activities,	
Activities		including formative assessment opportunities)	
Lectures	15	Combined lecture/lab sessions (online)	
Directed Study	45	Combined lecture/lab sessions (online)	
Student Self Study	140	Google classroom is the starting point for guidance in	
		directed study with direction from module leader.	
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100	
		hours, etc.)	

SUMMATIVE ASSESSMENT

Element Category	Component Name	Component Weighting
Coursework	Assignment 1/2	50% LO1, LO2
	Report on a variety of HPC principles. The report	
	will include a deep understanding, critically	
	evaluating and analysing the principles of cluster	
	computing and parallel computing.	
	Assignment 2/2	50% LO3
	Implementation of a HPC system using both	
	hardware and software, employing a variety of	
	testing techniques. In addition, a report	
	documenting the results and analysis of the HPC	Total = 100%
	system configurations.	

REFERRAL ASSESSMENT

Element Category	Component Name	Component Weighting
Coursework	Assignment 1/2	50% LO1, LO2
	Report on a variety of different HPC principles.	
	The report will include a deep understanding,	
	critically evaluating and analysing the principles of	
	cluster computing and parallel computing.	
	Assignment 2/2	50% LO3
	Implementation of a different HPC system using	
	both hardware and software, employing a variety	
	of testing techniques. In addition, a report	
	documenting the results and analysis of the HPC	Total = 100%
	system configurations.	

To be completed when presented for Minor Change approval and/or annually updated		
Updated by: Dr Andrew Watson	Approved by:	
Date: 15/09/2022	Date:	

UNIVERSITY OF PLYMOUTH MODULE RECORD

<u>SECTION A: DEFINITIVE MODULE RECORD</u>. Proposed changes must be submitted via Faculty/AP Quality Procedures for approval and issue of new module code.

MODULE CODE: CITY3	113	MODULE TITLE: Project Management			
CREDITS: 20		FHEQ LEVEL: 6 HECos CODE: 100812			
PRE-REQUISITES: Non	e	CO-REQUISITES: None	СОМРЕ	COMPENSATABLE: Yes	
SHORT MODULE DESC This module will buil methodologies, tools knowledge through p	RIPTOR: (<i>n</i> d understa and techni rofessional	nax 425 characters) anding of the key themes in iques used in professional p theory, example and practic	n project ma practice. Furt	nagement and the her, it will deliver design, control and	e generic practical d change
techniques, culminatir	mg in a 'Drag MENT (Use	gon's Den' style practical pres	entation to ar	Industry panel.	onents of
<u>Assessment</u>	-				
E1 (Examination)		C1 (Coursework)	100%	P1 (Practical)	
E2 (Clinical		A1 (Generic			
Examination)		assessment)			
T1 (Test)					
 time/cost/quality Be able to, throug Be able to discern Be able to implem management and ASSESSED LEARNING (control. h examples and manag ent, evalua change cor	, master methods of measuri ge the need for project chang te and present a detailed pro- ntrol methodologies to a profe S: (additional guidance below,	ng and contro e within comp ject concept, essional level. ; please refer	Iling project perfor outing related proje PID, and associated to the Programme	mance. cts.
Specification for releva	ant award/	programme Learning Outcom	ies.		
Assessed Module Learning Outcomes Award/ Programme Learning Outcomes contributed to					
LO1 Understand professional project management design, feasibility and control theories with specific reference to computing related projects.					
LO2 Identify, develop project documentatio	, implemen	t and evaluate professional ceptual computing related	8.1	8.1.5, 8.4.1	

LO3 Perform methods of measuring and controlling project performance and change management with specific reference to computing related projects.		8.2.2	
LO4 Implement and present a detailed project concept, PID, and associated management and change control documentation.		8.3.1, 8.3.2, 8.3.3, 8.5.4, 8.5.5	
DATE OF APPROVAL: August 2019	FACULTY/OFFICE	: Academic Partnerships	
DATE OF IMPLEMENTATION: September 2019	SCHOOL/PARTNER: CITY COLLEGE PLYMOUTH		
DATE(S) OF APPROVED CHANGE: XX/XX/XXXX	SEMESTER: Semester 1		
Notes:	•		

Additional Guidance for Learning Outcomes:

To ensure that the module is pitched at the right level check your intended learning outcomes against the following nationally agreed standards

- Framework for Higher Education Qualifications <u>http://www.qaa.ac.uk/publications/information-and-guidance/publication/?PubID=2718#.</u> <u>VW2INtJVikp</u>
- Subject benchmark statements <u>http://www.qaa.ac.uk/ASSURINGSTANDARDSANDQUALITY/SUBJECT-GUIDANCE/Pages/Subj</u> <u>ect-benchmark-statements.aspx</u>
- Professional, regulatory and statutory (PSRB) accreditation requirements (where necessary e.g. health and social care, medicine, engineering, psychology, architecture, teaching, law)
- QAA Quality Code <u>http://www.qaa.ac.uk/AssuringStandardsAndQuality/quality-code/Pages/default.aspx</u>

SECTION B: DETAILS OF TEACHING, LEARNING AND ASSESSMENT

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process. Some parts of this page may be used in the KIS return and published on the extranet as a guide for prospective students. Further details for current students should be provided in module guidance notes.

ACADEMIC YEAR: 2022/2023	NATIONAL COST CENTRE:
MODULE LEADER: Grant Sewell	OTHER MODULE STAFF:

Summary of Module Content

This module will teach students how to manage a computing related project. They should be able to analyse and plan the activities / resources needed to carry out a project, define the project risks and keep a project on time and within budget, utilising time, cost, quality and change management techniques. This module will also teach students practical business skills through the design and implementation of a conceptual group project with detailed professional project documentation, culminating in an industry-led 'Dragon's Den' style presentation.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]				
Scheduled Activities	Hours	Comments/Additional Information (briefly explain activities,		
		including formative assessment opportunities)		
Lectures	15	Combined lecture/lab sessions (online)		
Directed Study	45	Combined lecture/lab sessions (online)		
Student Self Study	140	Google classroom is the starting point for guidance in directed		
		study with direction from module leader.		
Total		(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours,		
		etc.)		

SUMMATIVE ASSESSMENT

Element Category	Component Name	Component Weighting
Coursework	Assignment 1 - Project Management Scenario Report	LO1 40%
	Assignment 2 - Conceptual computing (group) project proposal (incl. PID containing professional documentation on time, cost, quality and change management control)	LO2, LO3, LO4 60%
	culminating in an industry-led 'Dragon's Den' presentation. (online)	Total = 100%

REFERRAL ASSESSMENT (Same)

Element Category	Component Name	Component Weighting
Coursework	Assignment 1 - Different Project Management Scenario Report	LO1 40%
		LO2, LO3, LO4 60%

Assignment 2 - Different conceptual computing project proposal (incl. PID containing professional documentation on time, cost, quality and change management control) and	Total = 100%
video-based presentation. (online)	

To be completed when presented for Minor Change approval and/or annually updated			
Updated by: Dr Andrew Watson	Approved by:		
Date: 15/09/2022	Date:		

UNIVERSITY OF PLYMOUTH MODULE RECORD

<u>SECTION A: DEFINITIVE MODULE RECORD</u>. Proposed changes must be submitted via Faculty/AP Quality Procedures for approval and issue of new module code.

MODULE CODE: CITY31	MODULE TITLE: Machine Learning and AI							
CREDITS: 20	FHEQ LEVEL: 6 HECos CODE: 1003			100359	9			
PRE-REQUISITES:	RE-REQUISITES: CO-REQUISITES:			ne	СОМРЕ	NSATA	BLE: Y	/es
SHORT MODULE DESCRIPTOR: (max 425 characters)								
Modern Society is data-rich and there is a need to make sense of datasets of increasing complexity								
and size, from a broad	spectrum o	f application are	eas in ind	dustry, hea	lthcare, and	acade	mia. T	Гhis
module will introduce	both supervis	sed and unsuper	vised m	achine lear	ning princip	les and	l pract	ical
methods for learning from real data. There is scope for applied project work with industry who can								
provide datasets for stu	idents.	ka alaaa in aa		 .			مما	tha
* Inis practical assess	nent will ta	ke place in per	rson and	a on-site a	at CCP as s	pecifie	aon	the
distancing make this	inappropria	the time of the	tako r	lent, gover	nment guid stoly opling	iennes	ULL SO	ciai tivo
arrangements will be m		anges will be cor	iake p nmunica	tod via the		U a	iternat	live
	AFNT [] Ise HI	SA KIS definition	nsl – see	Definitions	of Flements	and		
Components of Assessn	nent		15] 500	Deprintions	<u>of Licincius</u>	unu		
E1 (Examination)	C1 (Cour	rsework)	60	P1 (Prac	tical)	40%	—	
(%					
E2 (Clinical	A1 (Gen	eric					_	
Examination)	assessm	ent)						
T1 (Test)								
SUBJECT ASSESSMENT PANEL to which module should be linked: BSc (Hons) Applied Computer								
Science								
Professional body mini	mum pass m	ark requiremen	t: N/A					
This module aims to n	rovido studo	nto with the cki	lle to pri	aduca coft	wara ta imn	Jomon	+ loorn	ving
algorithms and represe	ant that lear	ning in a variety		il wave in	order that	others	may a	ning Tain
understanding This w	vill include by	oth statistical m	or user ochanism	us and tho	so which ro	nrecent	t artifi	icial
noural notworks and doop loarning. Ethics of Machine Learning and AL will be introduced. The								
students will use readily available real world datasets to achieve this. There is scene for preject								
work with industry and government organisations who are willing to provide datasets for students								
to work with.								
ASSESSED LEARNING OUTCOMES: (additional guidance below: please refer to the Programme								
Specification for relevant award/ programme Learning Outcomes.								
At the end of the module the learner will be expected to be able to:								
Assessed Module Lea	rning Outcor	nes		Award/	Programme	Learnir	ng	
				Outcom	es contribut	ed to		

LO1 Gain a systematic understanding of the principles of machine learning and AI	8.1.1, 8.1.2, 8.4.3, 8.5.3
LO2 Discuss, compare and critically evaluate competing methods	8.1.4
LO3 Apply and extend their understanding through implementation of machine learning/AI techniques	8.2.1, 8.5.1, 8.5.2
LO4 Test, verify and document the resulting learning and representations	8.3.2

DATE OF APPROVAL: August 2019	FACULTY/OFFICE: Academic Partnerships	
DATE OF IMPLEMENTATION: September	SCHOOL/PARTNER: CITY COLLEGE	
2019	PLYMOUTH	
DATE(S) OF APPROVED CHANGE:	SEMESTER: Semester 2	
XX/XX/XXXX		
Notes:		

Additional Guidance for Learning Outcomes:

To ensure that the module is pitched at the right level check your intended learning outcomes against the following nationally agreed standards

- Framework for Higher Education Qualifications <u>http://www.qaa.ac.uk/publications/information-and-guidance/publication/?PubID=2718#.</u> <u>VW2INtJVikp</u>
- Subject benchmark statements <u>http://www.qaa.ac.uk/ASSURINGSTANDARDSANDQUALITY/SUBJECT-GUIDANCE/Pages/Subj</u> <u>ect-benchmark-statements.aspx</u>
- Professional, regulatory and statutory (PSRB) accreditation requirements (where necessary e.g. health and social care, medicine, engineering, psychology, architecture, teaching, law)
- QAA Quality Code <u>http://www.qaa.ac.uk/AssuringStandardsAndQuality/quality-code/Pages/default.aspx</u>

SECTION B: DETAILS OF TEACHING, LEARNING AND ASSESSMENT

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process. Some parts of this page may be used in the KIS return and published on the extranet as a guide for prospective students. Further details for current students should be provided in module guidance notes.

ACADEMIC YEAR: 20	22/2023		NATIONAL COST CENTRE:	
MODULE LEADER: Dr	Andrew Wa	tson	OTHER MODULE STAFF:	
Summary of Module	Content	-		
Linear Regression	I			
 Instance-based Le 	earning and [Decision Tr	rees	
Maximum Likelih	bod			
 Probabilistic (Bay 	esian) Inferei	nce		
Markov Chain Mo	onte Carlo			
Support Vector N	lachines			
Clustering algorit	hms, k-mean	s, Expecta	tion-Maximization, and Gaussian Mixture Models	
Ensemble learnin	g, bagging, b	oosting, st	tacking, random forests	
Dimensionality re	duction tech	iniques, S\	/D/PCA, Multidimensional scaling	
Artificial Neural N	letworks: pei	perceptron, MLPs, back propagation, intro to Deep Learning		
Ethics of the deve	elopment and	d use of M	achine Learning and Al	
SUMMARY OF TEACHIN	G AND LEAR	NING [Use	e HESA KIS definitions]	
Scheduled Activities	Hours	Comr	nents/Additional Information (briefly explain activities,	
		incluc	ling formative assessment opportunities)	
Lectures	15	Comb	ined lecture/lab sessions (online)	
Directed Study	45	Comb	ined lecture/lab sessions (online)	
Student Self Study	140	Goog	le classroom is the starting point for guidance in directed	
		study	with direction from module leader.	
Total	200	(NB: 1	L credit = 10 hours of learning; 10 credits = 100	

SUMMATIVE ASSESSMENT

Element Category	Component Name	Component Weighting
Coursework	Report to include a critical evaluation of a variety of machine learning techniques and their application.	LO1, LO2 100%
Practical	Implementation, test and verification of machine learning/AI algorithms with a report explaining the learning and representations. (Practical as coursework)	LO3, LO4 100%

hours, etc.)

REFERRAL ASSESSMENT

Element Category	Component Name	Component Weighting
Coursework	Different report to include a critical evaluation	LO1, LO2 100%
	of a variety of machine learning techniques	
	and their application.	

Practical as	Implementation, test and verification of	LO3, LO4 100%
Coursework	different machine learning/AI algorithms with	
	a report explaining the learning and	
	representations.	

To be completed when presented for Minor	Change approval and/or annually updated
Updated by: Dr Andrew Watson	Approved by:
Date: 04/09/2023	Date:

UNIVERSITY OF PLYMOUTH MODULE RECORD

<u>SECTION A: DEFINITIVE MODULE RECORD</u>. Proposed changes must be submitted via Faculty/AP Quality Procedures for approval and issue of new module code.

MODULE CODE: CITY3115	5 MODU	LE TITLE: Bio-Ins	pired Com	puting		
CREDITS: 20	FHEQ L	EVEL: 6	HEC	Cos CODE: 100359		
PRE-REQUISITES: None	CO-REC	QUISITES: None	COI	MPENSATABLE: Yes		
SHORT MODULE DESCRIP	TOR: (max 425 ch	aracters)				
Bio-inspired computation	nal algorithms are	e increasingly use	d to solve	e a variety of problem	ns and in	
particular they may be applied to scenarios where pattern recognition and intelligence are required.						
The algorithms themselve	es have been crea	ted from observin	g biologica	al mechanisms in natu	re. There	
is scope for project wor	k with industry a	nd government o	rganisatio	ns who can provide a	nnotated	
datasets for students.						
*This Exam will take place	e in person and o	n-site at CCP as sp	ecified on	the Assignment Brief.	However,	
if at the time of the asse	essment, governm	nent guidelines on	social dis	tancing make this inap	propriate	
then it will take place rer	motely online or a	alternative arrange	ments wil	be made. Any chang	es will be	
communicated via the DL	E.*					
ELEMENTS OF ASSESSME	NT [Use HESA KIS	definitions] – see 🕻	<u>Definitions</u>	<u>of Elements and Comp</u>	<u>onents of</u>	
Assessment					r	
E1 (Examination) 3	0% C1 (Cou	irsework)	70%	P1 (Practical)		
E2 (Clinical	A1 (Gen	eric assessment)				
Examination)						
T1 (Test)						
SUBJECT ASSESSMENT PA	NEL to which mo	dule should be linl	ked : BSc (ł	Hons) Applied Computer	Science	
Professional body minim	um pass mark req	uirement: N/A				
MODULE AIMS:			6 . 1	61. 6 I I .		
This module aims to provide the second	vide students wit	h the understand	ng of the l	penefits of adopting bi	ologically	
Inspired techniques whe	en implementing	computational alg	oritnms t	nat require a reasoni	ng about	
complex datasets and/or	systems. It will g	nve students an ini	appotatod	datasets to achieve th	ic Thoro	
is scope for project work	e students will use k with industry of	average and a		reanisations who are	willing to	
nrovide annotated datase	ets for students to	work with		iganisations who are	winnig to	
provide unifoldieu datasets for students to work with.						
ASSESSED LEARNING OUT	TCOMES: (addition	nal guidance below	: please re	efer to the Programme		
Specification for relevant	award/ programm	e Learning Outcon	nes)			
		0	,			
At the end of the module	the learner will be	e expected to be al	ole to:			
Assessed Module Learni	ing Outcomes	Award/ Prog	gramme Lo	earning Outcomes		
		contributed	to			
LO1 Establish an underst	tanding of a range	8.1.1, 8.2.1				
of bio-inspired computat	tional algorithms					

LO2 Discuss the differing data analysis	8.1.2, 8.3.2, 8.5.3
problems through the implementation of	
a selection of bio-inspired algorithms, and	
a resulting critical evaluation	
LO3 Recognise future opportunities to	8.4.3
exploit bio-inspired computational	
algorithms	
DATE OF APPROVAL: August 2019	FACULTY/OFFICE: Academic Partnerships
DATE OF IMPLEMENTATION: September	SCHOOL/PARTNER: City College Plymouth
2019	
DATE(S) OF ADDROVED CHANGE	SEMESTER: Semester 2
DATE(5) OF ATTROVED CHANGE.	
xx/xx/xxxx	
XX/XX/XXXX Notes:	
XX/XX/XXXX Notes:	

Additional Guidance for Learning Outcomes:

To ensure that the module is pitched at the right level check your intended learning outcomes against the following nationally agreed standards

- Framework for Higher Education Qualifications <u>http://www.qaa.ac.uk/publications/information-and-guidance/publication/?PubID=2718#.</u> <u>VW2INtJVikp</u>
- Subject benchmark statements <u>http://www.qaa.ac.uk/ASSURINGSTANDARDSANDQUALITY/SUBJECT-GUIDANCE/Pages/Subj</u> <u>ect-benchmark-statements.aspx</u>
- Professional, regulatory and statutory (PSRB) accreditation requirements (where necessary e.g. health and social care, medicine, engineering, psychology, architecture, teaching, law)
- QAA Quality Code <u>http://www.qaa.ac.uk/AssuringStandardsAndQuality/quality-code/Pages/default.aspx</u>

SECTION B: DETAILS OF TEACHING, LEARNING AND ASSESSMENT

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process. <u>Some parts of this page may be used in the KIS return and published on the extranet as a guide for prospective students.</u> Further details for current students should be provided in module guidance notes.

ACADEMIC YEAR: 20	22/23		NATIONAL COST CENTR	RE:
MODULE LEADER: D	r Andrew Wa	itson	OTHER MODULE STAFF	:
Summary of Module Human visual percep and design of visual Edges and featur Motion: Video, fe Objects: Groupir Learning models	e Content otion, visual n computing sy res: Edge dete eature trackin ng features, gr	euroscien stems, int ection, fea ng, backgr rouping m	ce, image acquisition and "n roducing: ture detection and represent ound subtraction, modelling otion, modelling variability	oise", and the evaluation tation motion and change
 Theoretical and prace Genetic Algorith Genetic Program Fitness functions Advanced repress Applications of G 	tical knowled ms ming entations Genetic Algori	ge of evol thms and	utionary computation, intro Genetic Programming	ducing:
SUMMARY OF TEACHIN	NG AND LEAR	NING [Us	e HESA KIS definitions]	
Scheduled Activities	Hours	Com inclu	ments/Additional Information ding formative assessment of	on (briefly explain activities, opportunities)
Lectures	15	Com	pined lecture/lab sessions (o	nline)
Directed Study	45	Coml	pined lecture/lab sessions (o	nline)
Student Self Study	140	Goog study	le classroom is the starting p with direction from module	point for guidance in directed leader.
Total	200	(NB: etc.)	1 credit = 10 hours of learning	ng; 10 credits = 100 hours,
SUMMATIVE ASSESSM	ENT			
Element Category	Componen	nt Name		Component Weighting

Element Category	Component Name	Component Weighting
Coursework	Report to include a critical evaluation of a variety of bio-inspired algorithms, their application and potential for future	LO1, LO2, LO3 100%
	exploitation	
	Exam – Demonstrate an understanding of	LO1 100%
Fxam	biologically inspired techniques for solving	
LXdin	complex problems (Exam as online time	
	constrained Coursework)	

REFERRAL ASSESSMENT

Element Category	Component Name	Component Weighting
Coursework	Report to include a critical evaluation of a variety of bio-inspired algorithms, their application and potential for future exploitation	LO1, LO2, LO3 100%
Report	Report – Demonstrate an understanding of biologically inspired techniques for solving complex problems	LO1 100%

To be completed when presented for Minor	Change approval and/or annually updated
Updated by: Dr Andrew Watson	Approved by:
Date: 04/09/2023	Date:

UNIVERSITY OF PLYMOUTH MODULE RECORD

<u>SECTION A: DEFINITIVE MODULE RECORD</u>. Proposed changes must be submitted via Faculty/AP Quality Procedures for approval and issue of new module code.

CREDITS: 20 FH	HEQ LEVEL: 6	JACS CODE: 100376
PRE-REQUISITES: CC	O-REQUISITES:	COMPENSATABLE: Yes

SHORT MODULE DESCRIPTOR: (max 425 characters)

Using Open Web Application Security Protocol (OWASP) Top Ten benchmarks, students investigate Cyber Physical Systems and applications in instrumentation and critical infrastructure networks. By their very nature such systems require a different security posture. Students are introduced to the ensuing Security and forensic challenges through theoretical and practical experimentation using raspberry pi and data science mitigation implementations.

This practical assessment will take place in person and on-site at CCP as specified on the Assignment Brief. However, if at the time of the assessment, government guidelines on social distancing make this inappropriate then it will take place remotely online or alternative arrangements will be made. Any changes will be communicated via the DLE.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions] – see <u>Definitions of Elements and Components of</u> <u>Assessment</u>

E1 (Examination)	C1 (Coursework)	60%	P1 (Practical)	40%
E2 (Clinical	A1 (Generic			
Examination)	assessment)			
T1 (Test)				

SUBJECT ASSESSMENT PANEL to which module should be linked: BSc (Hons) Applied Computer Science **Professional body minimum pass mark requirement:** N/A

MODULE AIMS:

This module allows students to explore business continuity techniques available to organisations in investigating, prevention and mitigation of security breaches to their computer system. Students will investigate forensic security exploitation and mitigation techniques according to OWASP Top 10 and other knowledge bodies.

They will be able to:

• Identify different networks and their unique security/forensic implementations and associated challenges - OWASP Top Ten

- Identify and explain security requirements of Cyber-Physical Systems (CPS) with respect to critical industrial networking solutions.
- Be able to work within approved industry guidelines BSI/ISO standards -27000/ACPO/OWASP
- Understand and be able to explain the security and forensic consequences of massive and/or critical wireless networking for the higher layers of communication systems

• Cultivate awareness of major open research challenges in the context of next generation networks such as BANs and Critical Infrastructure networks etc. and their implications in meeting societal challenges including forensics, security and ethics

ASSESSED LEARNING OUTCOMES: (additional guidance below; please refer to the Programme Specification for relevant award/ programme Learning Outcomes.)

At the end of the module the learner will be expected to be able to:

Assessed Module Learning Outcomes	Award/ Programme Learning Outcomes contributed to
LO1 - Understanding offensive/defensive methods of traditional and non-traditional networks of lower and higher layered security.	8.1.2, 8.2.1
LO2 – Demonstrate critical understanding and identify core security issues underpinned by OWASP Top Ten project	8.4.2, 8.4.3
LO3 - Analyse and implement Digital Forensic Investigations using Open source tools – checking viability and efficacy	8.5.2, 8.5.3
LO4 – Demonstrate Ethical awareness and application of Cybersecurity and Information resilience through BSI/ISO Standards: 27001 – IS management requirements ISO 27037 -digital evidence requirements. ACPO/OWASP ISO 15288 /26262 - CPS	8.1.4
LO 5 - Investigate Forensic Security with data driven methodologies/tools. Security data science, Threat Intelligence, Block chains etc.	8.3.2

DATE OF APPROVAL: August 2019	FACULTY/OFFICE: Academic Partnerships
DATE OF IMPLEMENTATION: September	SCHOOL/PARTNER: City College Plymouth
2019	
DATE(S) OF APPROVED CHANGE:	SEMESTER: Semester 2
XX/XX/XXXX	
Notes:	

Additional Guidance for Learning Outcomes:

To ensure that the module is pitched at the right level check your intended learning outcomes against the following nationally agreed standards

- Framework for Higher Education Qualifications <u>http://www.qaa.ac.uk/publications/information-and-guidance/publication/?PubID=2718#.</u> <u>VW2INtJVikp</u>
- Subject benchmark statements <u>http://www.qaa.ac.uk/ASSURINGSTANDARDSANDQUALITY/SUBJECT-GUIDANCE/Pages/Subj</u> <u>ect-benchmark-statements.aspx</u>
- Professional, regulatory and statutory (PSRB) accreditation requirements (where necessary e.g. health and social care, medicine, engineering, psychology, architecture, teaching, law)
- QAA Quality Code <u>http://www.qaa.ac.uk/AssuringStandardsAndQuality/quality-code/Pages/default.aspx</u>

SECTION B: DETAILS OF TEACHING, LEARNING AND ASSESSMENT

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process. Some parts of this page may be used in the KIS return and published on the extranet as a guide for prospective students. Further details for current students should be provided in module guidance notes.

ACADEMIC YEAR: 2022/2023	NATIONAL COST CENTRE:	
MODULE LEADER: Tomasz Bergier	OTHER MODULE STAFF:	
Summary of Module Content		
Non-Traditional Network Security		
Malware Forensics		
Memory forensics		
 Operating system forensics 		
Network forensics		
Security Assessment		
• Open source tools - viability and efficad	сy	
• Command line Interfaces/Interaction		
• Cyber physical systems design, applicat	tions and forensic security	
• Incidence response/Digital Investigatio	ns	
ISO/BSI/ACPO Standards		
• Data recovery & Business continuity		
Security Policy formulation		
• Next Generation forensic Security chall	lenges - data driven techniques	

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]				
Scheduled Activities	Hours	Comments/Additional Information (briefly explain activities,		
		including formative assessment opportunities)		
Lectures	15	Combined lecture/lab sessions (online)		
Directed Study	45	Combined lecture/lab sessions (online)		
Student Self Study	140	Google classroom is the starting point for guidance in directed		
		study with direction from module leader.		
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100		
		hours, etc.)		

SUMMATIVE ASSESSMENT

Element Category	Component Name	Component Weighting
Coursework	Assignment 1/2 design and implement IPS/IDS/DMZ/ACL CPS Security. Assignment 2/2: Forensics	LO1, LO2, LO4, LO5 100%
Practical	Forensic Investigation (practical as coursework)	LO3 100%

REFERRAL ASSESSMENT

Element Category	Component Name	Component Weighting
	Assignment 1/2 design and implement IPS/IDS/DMZ/ACL CPS Security. Assignment 2/2: Forensics	LO1, LO2, LO4, LO5 60%
Coursework	Assignment 2/2 Report - Forensic Investigation	LO3 40%
		Total = 100%

To be completed when presented for Minor Change approval and/or annually updated				
Updated by: Dr Andrew Watson	Approved by:			
Date: 15/09/2022	Date:			