

PROGRAMME QUALITY HANDBOOK 2023-24

BSc Integrated Technologies

Page 1 of 34

Welcome and Introduction

Welcome and Introduction to BSc Integrated Technologies Engineering

Welcome to BSc Integrated Technologies Engineering delivered at City College Plymouth.

This programme has been designed to equip you with the skills and knowledge base required to work in your chosen specialism or other graduate opportunities. It is also a platform from which you can undertake additional vocational and academic qualifications.

This Programme Quality handbook contains important information including:

- The approved programme specification
- Module records

Note: The information in this handbook should be read in conjunction with the current edition of: Your Programme Institution & University Student Handbook which contains student support based information on issues such as finance and studying at HE

- Your Module, Teaching, Learning and Assessment Guide
- o available on your programme VLE
- Plymouth University's Student Handbook
- available at: <u>https://www.plymouth.ac.uk/your-university/governance/student-handbook</u>

Award title: BSc (Hons) Integrated Technologies Engineering UCAS code: H110 HECOS code: 100184 Date of Approval: 3rd May 2017 Awarding Institution: University of Plymouth Teaching institutions: City College Plymouth

Accrediting body(ies)

This programme exists as a level-6 only Top-Up award. It is unlikely that the programme itself will be accredited due to existing as a single stage of study. However, to assist graduates with their professional development, the Programme Intended Learning Outcomes (section 8) for this programme have been illustratively mapped against the Incorporated Engineering (IEng) expectations from the UK Engineering Council's '*The Accreditation of Higher Education Programmes, UK Standard for Professional Engineering Competence Third edition*' guidance for Incorporated Engineer (IEng)¹.

For students arriving from specific prior study or experience in Marine Engineering, Naval Architecture, or Marine Autonomous Vehicles, respectively:

Meeting of specific Programme Intended Learning Outcomes (see section **Error! Reference source not found.**) may provide graduates with a specific exit award title, as follows. These are achieved through option module selection, subject specialism within the Individual Engineering Project, and meeting of specific Programme Intended Learning Outcomes through the Continued Professional Development in Engineering module:

BSc (Hons) Integrated Technologies Engineering (Marine Engineering) BSc (Hons) Integrated Technologies Engineering (Naval Architecture) BSc (Hons) Integrated Technologies Engineering (Autonomous Systems)

Distinctive Features

1

https://www.engc.org.uk/engcdocuments/internet/Website/Accreditation%20of%20Higher%20Education%20Programm es%20third%20edition%20(1).pdf

This BSc (Hons) Integrated Technologies Engineering:

- is careful aligned, through its learning outcomes and delivery structure, with the UK Engineering Council's
 requirements for programmes accredited to Incorporated Engineer (IEng) status. Along with the ability to focus
 many assessments on real workplace applications, this enables students, particularly for those based in the
 workplace, to plan for the next stage in their careers and their potential to progress to more senior roles and
 responsibilities in engineering.
- is a level-6, final-year degree, 'top-up' award for students, particularly those already in the workplace, that arrive with either level-5 (HND, Diploma HE or Foundation Degree) qualifications, or significant work experience that evidences suitability for undertaking the final year of this degree, or a mixture of both across mechanical, manufacturing, electrical and electronic, and digital technologies.
- develops critical and transformative graduates with understanding of, and intellect for the parameters of engineerin industries, the application of project management, and the ethos and skills for career-long professional development, complete within the context of technical knowledge, skill development and application across mechanical, electrical and electronic engineering and digital technologies.
- provides a scaled-insight into the knowledge, skill development and applications needed to lead and manage
 innovative and enterprising engineering solutions that integrate mechanical, electrical and electronic engineering
 and digital technologies. This includes: the breadth of industrial awareness and philosophies needed to lead in
 technological industries; the processes needed to manage through to achieving engineering solutions; and the
 development of the individual so as to be critical, transformative, knowledgeable and skilled within a society that wi
 ever continue to require engineering solutions.
- offers an innovative experiential approach to developing and furthering technological knowledge and skills. The
 novel embedding of professional/commercial-styled technological 'short courses', complete with 'certificates of
 attendance', within the programme's Professional Development module enables students to reflect on their strategi
 alignment with industry and their future careers. This experiential learning process of 'do and review' is thus firmly
 focused on developing the philosophy and function required to be transformative for engineering as an industry as
 well as their own careers.
- embraces the words of the UK Engineering Council² in that "Engineering is concerned with the art and practice of changing the world we live in. Driven by the needs of society and business, engineers strive to find solutions to complex challenges. They work to achieve useful and beneficial outcomes that enhance the welfare, health and safety of all whilst paying due regard to the environment." Furthermore, this programme aligns with the ethos of Incorporated Engineer (IEng) status in the "development and attainment of the know-how necessary to apply technology to engineering problems and processes, and to maintain and manage current technology, sometimes within a multidisciplinary engineering environment".

² The Accreditation of High Education Programmes, UK Standard for Professional Engineering Competence, Third Edition, <u>www.engc.org.uk</u>, <u>https://www.engc.org.uk/engcdocuments/internet/Website/Accreditation%20of%20Higher%20Education%20Programm</u>es%20third%20edition%20(1).pdf

Programme Structure

Stage 1					
Module Code	Module Title	No. of Credits	Core / Optional		
CITY3020	Engineering Leadership and Management	20	Core		
CITY3024	Engineering Project Management	20	Core		
CITY3032	Integrating Technologies for Contemporary and Future Engineering Sectors	20	Core		
CITY3117	Individual Engineering Project	40	Core		
CITY3028	Professional Development in Engineering	20	Optional		
MARN341	Marine Engineering	20	Optional		
MARN342	Naval Architecture 2	20	Optional		
CONT317	Control and Intelligent Systems Design	20	Optional		

Programme Aims

To provide structured teaching, learning and assessment to enable students' development to be assessed in line with the context of integrating technologies for engineered solutions and their :

Aim 1. use of logical and practical steps within a pragmatic and systematic approach to turn, often complex, concepts into reality

Aim 2. flexible use of their skills, knowledge and understanding to develop strategies for creative and innovative approaches to engineering problem solving and the seeking of sustainable solutions

Aim 3. use of numerical, computational, analytical and technical skills and appropriate tools to both describe and build existing and infer and develop potential engineering solutions

Aim 4. awareness of ethical, social, cultural, environmental, health and safety, and wider professional responsibilities such as engagement with developing technologies, including being risk, cost and value-conscious

Aim 5. familiarity of the nature of business and enterprise in their economic and social value, and appreciation of the global dimensions of engineering, commerce and communication

Programme Intended Learning Outcomes

Knowledge and understanding

sh an	PILO: On successful completion graduates ould have developed <i>critical</i> ³ knowledge d understanding of:	Acc	Cross-Referenced to UK Engineering Council's IEng preditation ⁴
1.	The scientific, mathematical and statistical principles underpinning application of current technologies, and their evolution, in engineering.	as de • ŀ t ⁱ • ŀ	Science and mathematics Engineering is underpinned by science and mathematics, and other associated disciplines, efined by the relevant professional engineering institution(s). Graduates will need: Knowledge and understanding of the scientific principles underpinning relevant current echnologies, and their evolution Knowledge and understanding of mathematics and an awareness of statistical methods necessary to support application of key engineering principles.
2.	product placement, management, project-management, professional conduct, risk and legislation, quality and sustainability as appropriate to global industry within its specific landscape of Political, Economic, Social, Technological, Legal and Environmental factors.	on in the v • k • k • L c c • A F F · A V • A	Economic, legal, social, ethical and environmental context Engineering activity can have impacts on the environment, on commerce, on society and dividuals. Graduates therefore need the skills to manage their activities and to be aware of arious legal and ethical constraints under which they are expected to operate, including: Knowledge and understanding of the commercial, economic and social context of engineering processes Knowledge of management techniques that may be used to achieve engineering objectives Jnderstanding of the requirement for engineering activities to promote sustainable levelopment Awareness of relevant legal requirements governing engineering activities, including bersonnel, health & safety, contracts, intellectual property rights, product safety and liability ssues Wareness of risk issues, including health & safety, environmental and commercial risk. Engineering practice This is the practical application of engineering skills, combining theory and experience, and of other relevant knowledge and skills. This can include: Awareness of quality issues and their application to continuous improvement
3.	relevant materials, equipment, tools, processes, products and practice to be employed within workshop and laboratory practice.	use (• L • F	Engineering practice This is the practical application of engineering skills, combining theory and experience, and of other relevant knowledge and skills. This can include: Jnderstanding of and ability to use relevant materials, equipment, tools, processes, or products Knowledge and understanding of workshop and laboratory practice

³ Defensible knowledge and understanding, whether through citation of sources or strength of reasoned argument.

https://www.engc.org.uk/engcdocuments/internet/Website/Accreditation%20of%20Higher%20Education%20Programm es%20third%20edition%20(1).pdf

4.	the merging of technologies that form the breadth of global engineering industries and offer future opportunities for engineers, markets and societies alike.	on the	Economic, legal, social, ethical and environmental context Engineering activity can have impacts on the environment, on commerce, on society and individuals. Graduates therefore need the skills to manage their activities and to be aware of various legal and ethical constraints under which they are expected to operate, including: Understanding of the need for a high level of professional and ethical conduct in engineering and a knowledge of professional codes of conduct Engineering practice
		115	This is the practical application of engineering skills, combining theory and experience, and
		•	Knowledge of contexts in which engineering knowledge can be applied (eg operations and management, application and development of technology, etc)

Cognitive and intellectual skills

PILO: On successful completion graduates should have developed the cognitive and intellectual skills to <i>critically</i> ⁵ analyse, apply and evaluate:		Cross-Referenced to UK Engineering Council's IEng Accreditation		
1.	information sourced from academic and technical literature and other sources.	 Engineering practice This is the practical application of engineering skills, combining theory and experience, and use of other relevant knowledge and skills. This can include: Ability to use and apply information from technical literature 		
2.	through identifying, reviewing and selecting techniques, procedures and methods relevant to engineering.	 Engineering analysis Engineering analysis involves the application of engineering concepts and tools to the solution of engineering problems. Graduates will need: Ability to monitor, interpret and apply the results of analysis and modelling in order to bring about continuous improvement Ability to apply quantitative methods in order to understand the performance of systems and components Ability to use the results of engineering analysis to solve engineering problems and to recommend appropriate action Ability to apply an integrated or systems approach to engineering problems through know-how of the relevant technologies and their application. 		
3.	knowledge and understanding through projects in order to implement design solutions and contribute to their evaluation for engineering industries	 Design Design at this level is the creation and development of an economically viable product, process or system to meet a defined need. It involves technical and intellectual challenges and can be used to integrate all engineering understanding, knowledge and skills to the solution of real problems. Graduates will need the knowledge, understanding and skills to: Define the problem, identifying any constraints including environmental and sustainability limitations; ethical, health, safety, security and risk issues; intellectual property; codes of practice and standards 		

Key and transferable skills

PILO:

Cross-Referenced to UK Engineering Council's IEng Accreditation

⁵ Defensible evidence of cognition and intellect, i.e. defensible through effective sourcing and use of information, whether from literature or empirical study.

On successful completion graduates should have developed the key and transferable skills to be <i>transformative</i> ⁶ through how they:	
 Conduct and manage themselves through personal and team programmes of work with the ability to communicate professionally. 	 Design Design at this level is the creation and development of an economically viable product, process or system to meet a defined need. It involves technical and intellectual challenges and can be used to integrate all engineering understanding, knowledge and skills to the solution of real problems. Graduates will need the knowledge, understanding and skills to: Communicate their work to technical and non-technical audiences. Additional general skills Graduates must have developed transferable skills, additional to those set out in the other learning outcomes, that will be of value in a wide range of situations, including the ability to: Exercise personal responsibility, which may be as a team member Engineering practice This is the practical application of engineering skills, combining theory and experience, and use of other relevant knowledge and skills. This can include: Awareness of team roles and the ability to work as a member of an engineering team.
 Apply problem-solving skills, including engagement with and effective use of IT applications and facilities. 	 Design Design at this level is the creation and development of an economically viable product, process or system to meet a defined need. It involves technical and intellectual challenges and can be used to integrate all engineering understanding, knowledge and skills to the solution of real problems. Graduates will need the knowledge, understanding and skills to: Apply problem-solving skills, technical knowledge and understanding to create or adapt design solutions that are fit for purpose including operation, maintenance, reliability etc Additional general skills Graduates must have developed transferable skills, additional to those set out in the other learning outcomes, that will be of value in a wide range of situations, including the ability to: Apply their skills in problem solving, communication, information retrieval, working with others and the effective use of general IT facilities
3. Plan and carry out autonomous work.	Additional general skills Graduates must have developed transferable skills, additional to those set out in the other learning outcomes, that will be of value in a wide range of situations, including the ability to: • Plan and carry out a personal programme of work

Employment related skills

PILO:	Cross-Referenced to UK Engineering Council's
	IEng Accreditation

Oi th th	n successful completion graduates should have developed e employment related skills to be <i>transformative</i> ⁷ through how ey:	
1.	Use appropriate codes of practice and industry standards	 Engineering practice This is the practical application of engineering skills, combining theory and experience, and use of other relevant knowledge and skills. This can include: Ability to use appropriate codes of practice and industry standards
2.	Synthesise considerations of business, customer and user needs alongside the wider engineering context, public perception and aesthetics	 Design Design at this level is the creation and development of an economically viable product, process or system to meet a defined need. It involves technical and intellectual challenges and can be used to integrate all engineering understanding, knowledge and skills to the solution of real problems. Graduates will need the knowledge, understanding and skills to: Be aware of business, customer and user needs, including considerations such as the wider engineering context, public perception and aesthetics
3.	Focus and reflect on professional development so as to target their lifelong learning within the working environment.	 Additional general skills Graduates must have developed transferable skills, additional to those set out in the other learning outcomes, that will be of value in a wide range of situations, including the ability to: Plan self-learning and improve performance, as the foundation for lifelong learning/CPD

Practical skills

PI Or the	LO: n successful completion graduates should have developed e practical skills to be <i>productive</i> in how they:	Cross-Referenced to UK Engineering Council's IEng Accreditation
1.	Select appropriate equipment and work safely and competently within a workshop or laboratory environment.	No directly related IEng accreditation Learning Outcome
2.	Work with information that may be incomplete or uncertain to monitor, analyse and evaluate engineering related systems in practice.	 Design Design at this level is the creation and development of an economically viable product, process or system to meet a defined need. It involves technical and intellectual challenges and can be used to integrate all engineering understanding, knowledge and skills to the solution of real problems. Graduates will need the knowledge, understanding and skills to: Work with information that may be incomplete or uncertain and be aware that this may affect the design.
3.	Create or adapt design and management solutions.	 Design Design at this level is the creation and development of an economically viable product, process or system to meet a defined need. It involves technical and intellectual challenges and can be used to integrate all engineering understanding, knowledge and skills to the solution of real problems. Graduates will need the knowledge, understanding and skills to: Apply problem-solving skills, technical knowledge and understanding to create or adapt design solutions that are fit for purpose including operation, maintenance, reliability etc Manage the design process, including cost drivers, and evaluate outcomes

Admissions Criteria

Entry Requirements for BSc (Hons) Engineering (Top-Up)

Progression from Level-5 Study	Students may apply from technological level-5 programmes. Either progression will be already defined within the Programme Specification of those level-5 programmes or they will be considered by admissions tutors on individual merit, based on prior technology-focused study to level-5 and its alignment with setting the individual student up for completion to meet the PILOs of this programme.
APEL/APCL ⁸	Prior Certificated Learning and Prior Experiential Learning are two broad ways a potential student may wish to present their applicability to join this level-6, final year of a degree, top-up programme.
	APEL/APCL will be considered as per Plymouth University regulations, which includes the possibility to APL 240 credits against a 360 credit BSc (Hons) degree. For mapping either APCL or APEL the admissions tutor for the relevant college should refer to the learning outcomes of their level-5 programmes that have progression to this top-up agreed. Where that isn't immediately applicable, the admissions tutor may consider L5 programmes from other colleges that deliver this L6 top-up programme.
Capability Requirements, and Disability	Both the context of, and therefore likelihood for future employment, and active study on this programme requires engagement with various technologies across engineering environments, including workshops, laboratories, and a wide variety of engineering industries.

Progression criteria for Final and Intermediate Awards

This programme has been designed for the University of Plymouth and partners' involvement with the SWIoT (South West Institute of Technology). The intent is that further level-6 top-up engineering programmes will include and/or share modules from this programme. Should a student, particularly a part-time student, wish to transfer between those programmes then this will be considered by the admissions tutor for the particular site of delivery in line with the contents of the Programme Specifications.

Additional Guidance for Learning Outcomes:

To ensure that the module is pitched at the right level check your intended learning outcomes against the following nationally agreed standards

- Framework for Higher Education Qualifications <u>http://www.qaa.ac.uk/publications/information-and-guidance/publication/?PubID=2718#.</u> <u>VW2INtJVikp</u>
- Subject benchmark statements
 <u>http://www.qaa.ac.uk/ASSURINGSTANDARDSANDQUALITY/SUBJECT-GUIDANCE/P</u>
 <u>ages/Subject-benchmark-statements.aspx</u>
- SEEC level descriptors
 <u>http://www.seec.org.uk/academic-credit/seec-credit-level-descriptors-2010</u>
- Professional, regulatory and statutory (PSRB) accreditation requirements (where necessary e.g. health and social care, medicine, engineering, psychology, architecture, teaching, law)
- QAA Quality Code
 <u>http://www.qaa.ac.uk/AssuringStandardsAndQuality/quality-code/Pages/default.aspx</u>

⁸ Accredited Prior Learning and Accredited Prior Certificated Learning

Module Records

<u>SECTION A: DEFINITIVE MODULE RECORD</u>. Proposed changes must be submitted via Faculty/AP Quality Procedures for approval and issue of new module code.

MODULE CODE: CITY3020	MODULE TITLE: Engineering Lead	lership and Management
CREDITS: 20	FHEQ LEVEL: 6	HECOS CODE: 100088
PRE-REQUISITES: None	CO-REQUISITES: None	COMPENSATABLE: Y

SHORT MODULE DESCRIPTOR:

This module focuses on developing the critical knowledge and understanding of what parameterises and drives the breadth of engineering industries. In this context, students will develop the cognitive and employability skills necessary to be strategically critical and transformative in their future leadership and management of engineering.

 ELEMENTS OF ASSESSMENT [Use HESA KIS definitions] – see Definitions of Elements and Components of Assessment

 E1 (Examination)
 C1 (Coursework)
 50%
 B1 (Practical)
 50%

E1 (Examination)	C1 (Coursework)	50%	P1 (Practical)	50%
E2 (Clinical Examination)	A1 (Generic assessment)			
T1 (Test)				

SUBJECT ASSESSMENT PANEL to which module should be linked: Engineering Professional body minimum pass mark requirement: N/A

MODULE AIMS:

To present breadth and depth of the extent of engineering as a collection of industries that produce real, tangible solutions for the needs and desires of society. Outlining and contextualising these. Positioning professional expectations within those parameters. Envisaging the future. Understanding and purposing the leadership of businesses and the industry itself. Understanding and categorising the factors that challenge the development of engineering. Ultimately, developing skills and attributes needed for the regional, national and international future of engineering.

ASSESSED LEARNING OUTCOMES: (additional guidance below; please refer to the Programme Specification for relevant award/ programme Learning Outcomes.

At the end of the module the learner will be expected to be able to:

Assessed Module Learning Outcomes	Award/ Programme Learning Outcomes contributed to
1. Demonstrate critical knowledge and understanding of regional, national and international engineering enterprises in the engineering sector and the challenges they face.	8.1.2: critical knowledge and understanding of product placement, management, professional conduct, risk and legislation, quality and sustainability as appropriate to the industry within its specific landscape of Political, Economic, Social, Technological, Legal and Environmental factors
2. Defend their cognition and intellect of leadership and enterprise in engineering through sourcing, critically analysing, applying and evaluating information from academic and other industry relevant literature.	 8.2.1: critically analyse, apply and evaluate information sourced from academic and technical literature and other sources 8.4.1. employment related skills to be transformative in how they use appropriate codes of practice and industry standards
3. Evidence their ability to balance internal and external factors of engineering enterprises to position those businesses for their immediate, wider and future markets.	8.4.2: synthesise considerations of business, customer and user needs alongside the wider engineering context, public perception and aesthetics
4. Communicate critical knowledge and understanding through both written and verbal communication.	8.3.1: key and transferable skills to be transformative through how they conduct and manage themselves through personal and team programmes of work with the ability to communicate professionally.

DATE OF APPROVAL: 29/09/2020	FACULTY/OFFICE: Academic Partnerships
DATE OF IMPLEMENTATION: 29/09/2020	SCHOOL/PARTNER: City College Plymouth
DATE(S) OF APPROVED CHANGE: XX/XX/XXXX	SEMESTER: Semester 1 & 2

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23

MODULE LEADER: TBC

NATIONAL COST CENTRE: 115 OTHER MODULE STAFF: Lance Chatfield

Summary of Module Content

Industry sources: Analysis of the breadth of regional, national and international engineering industries and sectors. Professional expectations and accreditation. Predictions and insight into the future of engineering. Academic sources: Leadership styles and models. Biases and other challenges facing the behaviours and personalities of entrepreneurs, leaders and managers. The activities and outputs of leadership. Combined: Internal and external factors and challenges faced by (engineering) organisations. Internal management of people and resource, goals, strategies, policies, objectives, tactics, regulations and tasks. Analysis of external PESTLE factors.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]			
Scheduled Activities	Hours	Comments/Additional Information (briefly explain activities, including	
		formative assessment opportunities)	
Lectures and Seminars	40	Combining taught elements with considerable use of seminar discussions	
		to engage conceptual theory with real-world application.	
Tutorials	5	Focused on formative assessment in the form of discussion groups	
Directed Individual Study	30	Task directed activities, such as specific reading/DLE activities	
Self-directed Individual	125	Background reading to develop critical understanding of theory,	
Study		and assessment work	
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours, etc.)	

SUMMATIVE ASSESSMENT

Element Category	Component Name	Component Weighting
Coursework	Sectioned Essay/Report: 3000 word (not including tables, figures, in-text references) synthesising industrial understanding and academic theories in line with predictions and insight into the future of a personally chosen engineering sector.	100%
Practical	Case Study Presentation: synthesis of industrial understanding and academic theory in critical evaluation of an engineering case study.	100%

REFERRAL ASSESSMENT				
Element Category	Component Name	Component Weighting		

Coursework (in lieu of practical)	Case Study Presentation by video: synthesis of industrial understanding and academic theory in critical evaluation of an engineering case study. This must be of a different case study to the first attempt at this summative assessment.	100%
Coursework	Sectioned Essay/Report: 3000 word (not including tables, figures, in-text references) critical discussion of the wider engineering sector in line with relevant enterprise, leadership and management considerations.	100%

To be completed when presented for Minor Change approval and/or annually updated		
Updated by: Dr Tamal Barman	Approved by: Rose McDonald	
Date: July 2022	Date: July 2022	

<u>SECTION A: DEFINITIVE MODULE RECORD</u>. Proposed changes must be submitted via Faculty/AP Quality Procedures for approval and issue of new module code.

MODULE CODE: CITY3024	MODULE TITLE: Engineering	Project Management
CREDITS: 20	FHEQ LEVEL: 6	HECOS CODE: 100812
PRE-REQUISITES: None	CO-REQUISITES: None	COMPENSATABLE: Y
SHORT MODULE DESCRIPTOR:		

This module enables students to develop critical knowledge and understanding of and the ability to employ project management theory in engineering context(s).

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions] – see <u>Definitions of Elements and Components of</u>					
<u>Assessment</u>					
E1 (Examination)		C1 (Coursework)	50%	P1 (Practical)	50%
E2 (Clinical Examination)		A1 (Generic assessment)			
T1 (Test)					

SUBJECT ASSESSMENT PANEL to which module should be linked: Engineering Professional body minimum pass mark requirement: N/A

MODULE AIMS:

To present academic and industrial understanding of project management methodology, techniques and tactics. To offer prescribed problems that enable students to employ engineering project management to present a balanced and synthesised evaluation of that activity. Enable students to employ gained knowledge and skills in the critical evaluation of case studies. Enable the development and evidencing of written and verbal communication skills, through the evaluation of theory to practice.

ASSESSED LEARNING OUTCOMES: (additional guidance below; please refer to the Programme Specification for relevant award/ programme Learning Outcomes.

At the end of the module the learner will be expected to be able to:

Assessed Module Learning Outcomes	Award/ Programme Learning Outcomes contributed to
1. Demonstrate critical knowledge and	8.1.2. product placement, management,
understanding of project management and	project-management, professional conduct, risk and
specific techniques that are contemporary within	legislation, quality and sustainability as appropriate to the
	industry within its specific landscape of Political,

the engineering sector, and its positioning within wider business considerations.	Economic, Social, Technological, Legal and Environmental factors.
2. Critically analyse and evaluate their application of project management techniques to implement design solutions	 8.2.2. Critically analyse, apply and evaluate through identifying, reviewing and selecting techniques, procedures and methods relevant to engineering. 8.2.3. critically analyse, apply and evaluate knowledge and understanding through projects in order to implement design solutions and contribute to their evaluation for engineering industries
3. Apply problem solving skills and resources, act appropriately and communicate professionally, in their project management of engineering problems	 8.3.1. Key and transferable skills to be transformative through how they conduct and manage themselves through personal and team programmes of work with the ability to communicate professionally. 8.3.2. Key and transferable skills to be transformative through how they apply problem-solving skills, including engagement with and effective use of IT applications and facilities.
4. Be productive in how they work with information that may be incomplete or uncertain to create project management solutions.	 8.5.2. Practical skills to be productive in how they work with information that may be incomplete or uncertain to monitor, analyse and evaluate engineering related systems in practice. 8.5.3. Practical skills to be productive in how they create or adapt design and management solutions.

DATE OF APPROVAL: 29/09/2020	FACULTY/OFFICE: Academic Partnerships
DATE OF IMPLEMENTATION: 29/09/2020	SCHOOL/PARTNER: City College Plymouth
DATE(S) OF APPROVED CHANGE: XX/XX/XXXX	SEMESTER: Semester 1 & 2

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23 MODULE LEADER: TBC

NATIONAL COST CENTRE: 115 OTHER MODULE STAFF: Lance Chatfield

Summary of Module Content:

Project management principles and the varying foci, benefits and disadvantages, and timeline of the development of different project management models, systems and techniques. Illustrative examples: Total Quality Management, Waterfall, PRINCE2, Scrum. Lean manufacturing and the development to and rise of Agile as a philosophical base for project management. Industry perspectives on project management to reach engineered solutions. Critical analysis of case studies using theory and evidence based literature. Engagement with project management methodologies within a Lean/Agile philosophy and approach to present a project management outline for a given scenario.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]		
Scheduled Activities	Hours	Comments/Additional Information (briefly explain activities, including formative assessment opportunities)
Lectures	20	Covering project management as employed across scales and foci of engineering industries, as well as theories, models and methods for project management.
Tutorials	25	In-class development of individual or group project management, and including formative assessment in the form of discussion groups
Seminars	4	Guest speakers from industry.
Directed Individual Study	26	Task directed activities, such as specific reading/DLE activities
Self-directed Individual Study	125	Background reading to develop critical understanding of theory, and assessment work
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours, etc.)

SUMMATIVE ASSESSMENT

Element Category	Component Name	Component Weighting	
Coursework	Sectioned Essay/Report: 2000 word (not including tables, figures, in-text references) synthesising project-management theory and industrially recognised methodologies in line with a personally chosen engineering application case study.	100%	

Practical	Project Management Presentation: synthesis of learnt project management theory with project management of an actual engineering problem and solution.	100%

REFERRAL ASSESSMENT				
Element Category	Component Name	Component Weighting		
Coursework (in lieu of practical)Case Studies Presentation by video: A presentation comparing project management case studies with the needs of engineering industries.		100%		
Coursework	Sectioned Essay/Report: 2000 word (not including tables, figures, in-text references) synthesising project-management theory and industrially recognised methodologies in line with a personally chosen engineering application case study. This must be of a different case study to the first attempt at this summative assessment.	100%		

To be completed when presented for Minor Change approval and/or annually updated		
Updated by: Dr Tamal Barman	Approved by: Rose McDonald	
Date: July 2022	Date: July 2022	
CECTION A DEFINITIVE MODILIE DECODD Durand the second state in the second state in the second state is the second state in the second state is the second state in the second state is the		

<u>SECTION A: DEFINITIVE MODULE RECORD</u>. Proposed changes must be submitted via Faculty/AP Quality Procedures for approval and issue of new module code.

MODULE CODE: CITY3028	MODULE TITLE: Professiona	al Development in Engineering
CREDITS: 20	FHEQ LEVEL: 6	HECOS CODE: 100184
PRE-REQUISITES: None	CO-REQUISITES: None	COMPENSATABLE: Y
SHORT MODULE DESCRIPTOR:		

Undertaking a collection of short courses within this module enables students to track, document, synthesise, reflect on and evaluate their professional development in line with their learning in higher education. This professionally extends their development of their engineering knowledge and skills whilst assessing students' ability to be critically transformative in respect to their career development.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions] – see <u>Definitions of Elements and Components of</u> <u>Assessment</u>

E1 (Examination)	C1 (Coursework)	50%	P1 (Practical)	50%
E2 (Clinical Examination)	A1 (Generic assessment)			
T1 (Test)				

SUBJECT ASSESSMENT PANEL to which module should be linked: Engineering Professional body minimum pass mark requirement: N/A

MODULE AIMS:

To present techniques and skills for documenting professional development. Provide commercially styled professional development short courses in a range of relevant industrial and technical engineering areas that provide institutional certificates of attendance for documenting within professional development planning (PDP) portfolios. To embed the philosophy of critical reflection and transformative alignment with career development. To simulate the presentation of professional development for professional body recognition.

ASSESSED LEARNING OUTCOMES: (additional guidance below; please refer to the Programme Specification for relevant award/ programme Learning Outcomes.

At the end of the module the learner will be expected to be able t	to:
--	-----

Assessed Module Learning Outcomes	Award/ Programme Learning Outcomes contributed to
1. Evidence critical understanding of professional development and alignment with the needs of industry and the wider value of engineering.	8.1.4.critical knowledge and understanding of the merging of technologies that form the breadth of engineering industries and offer future opportunities for engineers, markets and societies alike.
 Safely engage with the technical application of knowledge and skills in workshop or laboratory environments. 	8.5.1. Select appropriate equipment and work safely and competently within a workshop or laboratory environment.
3. Reflect on own experiences and education in line with key employment skills and attributes.	 8.2.1. critically analyse, apply and evaluate information sourced from academic and technical literature and other sources 8.3.3. Key and transferable skills to be transformative through how they plan and carry out autonomous work. 8.4.1. employment related skills to be transformative in how they use appropriate codes of practice and industry standards
 Strategically plan for their future career(s), including aspects of lifelong learning and professional development. 	8.4.3. employment related skills to be transformative through how they focus and reflect on professional development so as to target their lifelong learning within the working environment
5. Communicate verbally professional goals, well aligned with their experience and education	8.3.1. Conduct and manage themselves through personal and team programmes of work with the ability to communicate professionally.

DATE OF APPROVAL: 29/09/2020	FACULTY/OFFICE: Academic Partnerships
DATE OF IMPLEMENTATION: 29/09/2020	SCHOOL/PARTNER: City College Plymouth
DATE(S) OF APPROVED CHANGE: XX/XX/XXXX	SEMESTER: Semester 1 & 2

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23
MODULE LEADER: Martin Boulter

NATIONAL COST CENTRE:115 OTHER MODULE STAFF: Andrew Reed

Summary of Module Content

Continuing Professional Development principles and the maintenance of Professional Development Planning portfolios. UK Engineering Council standards for accreditation. Professional body institutions membership and registration. Parameterisation of theoretical knowledge, analytical skills, application, responsibility, transferable skills, ethics and values relevant to professional accreditation standards. Commercially styled professional short courses across technical and industrial areas of engineering.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]			
Scheduled Activities	Hour	Comments/Additional Information (briefly explain	
	s	activities, including formative assessment opportunities)	
Lectures	10	Covering CPD and the areas of foci within UK Engineering	
		Council accreditation	
Tutorials	20	Including guidance with portfolios, professional body	
		presentations and formative feedback.	
Short Course	100	Collection of individual short courses with certificates of	
		attendance.	
Directed Individual Study	35	Directed reading & VLE activity around each short course	
Self-directed Individual	35	Background reading to develop critical	
Study		understanding. Preparation of assessment work.	
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours,	
		etc.)	

SUMMATIVE ASSESSMENT

Element Category	Component Name	Component Weighting	
Coursework	Personal Development Planning (PDP) Portfolio: to include detailed professional analysis of personal career and studies to date and planned CPD that aligns with career aspirations, as well as collating certificates of short-course attendance and therefore evidencing the meeting of ALO#2.	100%	
Practical Professional Interview: a professional interview designed to replicate the professional review process of a PSRB.		100%	
REFERRAL ASSESSMENT			
Element Category	Component Name	Component Weighting	

Element Category	Component Name	Component Weighting
Practical	Professional Interview: a professional interview designed to	100%
	replicate the professional review process of a PSRB.	
Coursework	Personal Development Planning (PDP) Portfolio: to include	100%
	detailed professional analysis of personal career and studies	
	to date and planned CPD that aligns with career aspirations,	
	as well as collating certificates of short-course attendance	
	and therefore evidencing the meeting of ALO#2.	

To be completed when presented for Minor Change approval and/or annually updated		
Updated by : Dr Tamal Barman	Approved by: Rose McDonald	
Date: July 2022	Date: July 2022	

<u>SECTION A: DEFINITIVE MODULE RECORD</u>. Proposed changes must be submitted via Faculty/AP Quality Procedures for approval and issue of new module code.

MODULE CODE: CITY3032	MODULE TITLE: Integrating Technologies for Contemporary and Future	
	Engineering Sectors	
CREDITS: 20	FHEQ LEVEL: 6	HECOS CODE: 100184
PRE-REQUISITES: None	CO-REQUISITES: None	COMPENSATABLE: Y

SHORT MODULE DESCRIPTOR:

This module focuses on the integrating of mechanical, electrical and electronic, and computing technologies in the solutions that contemporary and future engineering sectors provide. Knowledge and understanding, as well as the abilities to synthesise technologies, employ through group work and showcase their engineered solutions will be addressed through this module.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions] – see <u>Definitions of Elements and Components of</u>						
<u>Assessment</u>	<u>Assessment</u>					
E1 (Examination)		C1 (Coursework)		P1 (Practical)	100	
					%	
E2 (Clinical Examination)		A1 (Generic assessment)	Pass/Fail			
T1 (Test)						

SUBJECT ASSESSMENT PANEL to which module should be linked: Engineering Professional body minimum pass mark requirement: N/A

MODULE AIMS:

This module aims to develop students' knowledge and understanding and the ability to synthesise and apply, through group work, the integrating of technologies to solve engineering problems.

ASSESSED LEARNING OUTCOMES: (additional guidance below; please refer to the Programme Specification for relevant award/ programme Learning Outcomes.

At the end of the module the learner will be expected to be able to

Assessed Module Learning Outcomes	Award/ Programme Learning Outcomes contributed to
1. Demonstrate critical knowledge and understanding of the relevant mix of key principles, materials and processes factors that enable integrated technologies to be employed for solving engineering problems across industries.	 8.1.3. Critical knowledge and understanding of the relevant materials, equipment, tools, processes, products and practice to be employed within workshop and laboratory practice. 8.1.4. critical knowledge and understanding of the merging of technologies that form the breadth of engineering industries and offer future opportunities for engineers, markets and societies alike.
2. Evidence their ability to critically analyse and evaluate integrated technologies as they are applied through project based design solutions for engineering problems.	 8.2.2. Critically analyse, apply and evaluate through identifying, reviewing and selecting techniques, procedures and methods relevant to engineering. 8.2.3. critically analyse, apply and evaluate knowledge and understanding through projects in order to implement design solutions and contribute to their evaluation for engineering industries
3. Engage with determining and employing relevant and available resources, including IT, engineering facilities and equipment, in their design and management problem solving.	 8.3.2. Key and transferable skills to be transformative through how they apply problem-solving skills, including engagement with and effective use of IT applications and facilities. 8.5.1. Practical skills to be productive in how they select appropriate equipment and work safely and competently within a workshop or laboratory environment. 8.5.3. Practical skills to be productive in how they create or adapt design and management solutions.
 Act with awareness of appropriate codes of practice and industry standards in the development and implementation of engineering solutions. 	8.4.1. employment related skills to be transformative through how they use appropriate codes of practice and industry standards

DATE OF APPROVAL: 29/09/2020	FACULTY/OFFICE: Academic Partnerships
DATE OF IMPLEMENTATION: 29/09/2020	SCHOOL/PARTNER: City College Plymouth
DATE(S) OF APPROVED CHANGE: XX/XX/XXXX	SEMESTER: Semester 1 & 2

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23

MODULE LEADER: Andrew Reed

NATIONAL COST CENTRE: 115 OTHER MODULE STAFF: Dave John/Owais Raja

Summary of Module Content

- Parameterisation of the key principles, materials and processing factors that enable mechanical, electrical and electronic and computing technologies to be integrated to form engineering solutions.
- Coverage of engineering standards and expansion on the aspects contained within the UK Engineering Council's Codes of Conduct
- Extensive workshop and laboratory activity across those integrated technologies.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]			
Scheduled Activities	Hours	Comments/Additional Information (briefly explain activities, including formative assessment opportunities)	
Lectures	20		
Seminars	30	Timetabled sessions for groups to prepare their assessment task with guidance and advice available from the tutor. Plus timetabled sessions to prepare the tradeshow itself.	
Workshops	30	Enabling groups to prepare their assessment product, whilst engaging with the range of technologies in practice and undertaking their competency assessment.	
Directed Individual Study	20	Directed to engage with their groups to refine and complete the assessment task.	
Self-directed Individual Study	100	Recommended engagement with mechanical, electrical and electronic, and computing technologies, through reading and, if appropriate, practice, so as to inform future	

		engagement with these technologies throughout their
		careers.
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours,
		etc.)

SUMMATIVE ASSESSMENT

Element Category	Component Name	Component Weighting
Practical	Group trade show stand and poster defence, plus engineering solution pitch	100%
Assessment	Pass/Fail competency assessment: safe and appropriate use of equipment within timetabled lab and workshop time.	Pass/Fail

Element Category	Component Name	Component Weighting		
Coursework (in lieu of practical)	Case Study Presentation by video: synthesis of theory in critical evaluation of an integrated engineering case study with their own recommendations for design and managed solutions related to the case study.	100%		
Assessment	Pass/Fail competency assessment: safe and appropriate use of equipment within workshop and/or lab environments.	Pass/Fail		

To be completed when presented for Minor Change approval and/or annually updated		
Updated by: Dr Tamal Barman	Approved by: Rose McDonald	
Date: July 2022	Date: July 2022	

<u>SECTION A: DEFINITIVE MODULE RECORD</u>. Proposed changes must be submitted via Faculty/AP Quality Procedures for approval and issue of new module code.

MODULE CODE: CITY3117	MODULE TITLE: Individual Engineering Project		
CREDITS: 40	FHEQ LEVEL: 6	HECOS CODE: 100184	
PRE-REQUISITES: None	CO-REQUISITES: None	COMPENSATABLE: N	

SHORT MODULE DESCRIPTOR:

Work-based, industry-focused or academic independent critical inquiry of an engineering problem. A critical review of extant knowledge allows the student to identify a focus for their inquiry that may relate to either integrated technologies or mechanical, electrical and electronic or digital technologies as appropriate to their degree choice. The student is guided by an academic supervisor in seeking their work to be defensible by the evidence their review of extant knowledge and own empirical work provides.

ELEMENTS OF ASSESSMENT [Use HESA KIS definitions] – see <u>Definitions of Elements and Components of</u>						
<u>Assessment</u>	Assessment					
E1 (Examination)		C1 (Coursework)	70%	P1 (Practical)	30%	
E2 (Clinical Examination)		A1 (Generic assessment)				
T1 (Test)						

SUBJECT ASSESSMENT PANEL to which module should be linked: Engineering Professional body minimum pass mark requirement: N/A

MODULE AIMS:

This module aims to develop students' in-depth knowledge and understanding of a specific topic through academic research, study of industry or industrial research and development, providing opportunity to engage

with research methodologies, integrate findings/conclusions within the context of the current state of the art of engineering knowledge and communicate their findings appropriately for their chosen project topic. **ASSESSED LEARNING OUTCOMES:** (additional guidance below; please refer to the Programme Specification for relevant award/ programme Learning Outcomes.

At the end	of the	module t	the	learner	will he	evnected	to	he ah	le to:
At the end	or the	inouule i	uie	leannei	will be	expected	ω	טכ מט	$i \in 10$.

Assessed Module Learning Outcomes	Award/ Programme Learning Outcomes contributed to
1. Demonstrate critical knowledge and understanding of specialist engineering/disciplinary topics and the fundamental principles of science, mathematics, statistics, resources and processes specifically relevant to enabling them to be investigated.	 8.1.1 Critical knowledge and understanding of the scientific, mathematical and statistical principles underpinning application of current technologies, and their evolution, in engineering. 8.1.3. Critical knowledge and understanding of relevant materials, equipment, tools, processes, products and practice to be employed within workshop and laboratory practice.
2. Critically defend their project-based inquiry of engineering problems through analysis, application and evaluation of extant information and techniques, procedures and methods relevant to the chosen topic.	 8.2.1. Critically analyse, apply and evaluate information sourced from academic and technical literature and other sources. 8.2.2. Critically analyse, apply and evaluate through identifying, reviewing and selecting techniques, procedures and methods relevant to engineering. 8.5.1. Practical skills to be productive in how they select appropriate equipment and work safely and competently within a workshop or laboratory environment. 8.5.2. Practical skills to be productive in how they work with information that may be incomplete or uncertain to monitor, analyse and evaluate engineering related systems in practice.
3. Create and/or adapt engineering solution(s) and synthesis them in line with the project purpose and its findings within the context of business, customer or user needs and the wider engineering context.	 8.4.2. employment related skills to be transformative through how they synthesise considerations of business, customer and user needs alongside the wider engineering context, public perception and aesthetics 8.5.3. Practical skills to be productive in how they create or adapt design and management solutions.
4. Communicate professionally through project reporting of an engineering problem and their empirical investigation of it, and personal reflection of their professional development through their undertaking of it.	 8.3.1. Key and transferable skills to be transformative through how they conduct and manage themselves through personal and team programmes of work with the ability to communicate professionally. 8.3.3. Key and transferable skills to be transformative through how they plan and carry out autonomous work. 8.4.3. Employment related skills to be transformative through how they focus and reflect on professional development so as to target their lifelong learning within the working environment.

DATE OF APPROVAL: 29/09/2020	FACULTY/OFFICE: Academic Partnerships
DATE OF IMPLEMENTATION: 29/09/2020	SCHOOL/PARTNER: City College Plymouth
DATE(S) OF APPROVED CHANGE: XX/XX/XXXX	SEMESTER: Semester 1 & 2

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process.

ACADEMIC YEAR: 2022/23	NATIONAL COST CENTRE: 115
MODULE LEADER: Owais Raja	OTHER MODULE STAFF: Martin Boulter, George Audu, Owais Raja

Summary of Module Content

- Develop or refine the research problem or question
- State aims and objectives
- Conduct in-depth search of literature relating to the project topic.
- Identify, design and undertake an investigative study of the subject matter.
- Analyse data and interpret research findings.
- Produce a written report, to include application of engineering knowledge.

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]					
Scheduled Activities	Hours	omments/Additional Information (briefly explain activities, including			
		formative assessment opportunities)			
Lectures	10	Final year project research skills and guidance			
Computer workshop	1	Workshop on finding information using library resources			
Project supervision	24	Meetings with project supervisor			
Independent study	365	lf-study			
Total	400	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours, etc.)			

SUMMATIVE ASSESSMENT

Element Category	Component Name	Component Weighting			
Practical	Mid-year project outline viva-voce, including review of extant information on the topic and research methodology outline.	100%			
Coursework	100%				
REFERRAL ASSESSMENT					

Element Category	Component Name	Component Weighting	
Coursework in lieu	rsework in lieu Written project-initiation outline as an exercise in effective		
of practical	project management	100/0	
Coursework	Completion of project report/thesis including professional development reflection appendix.	100%	

To be completed when presented for Minor Change approval and/or annually updated				
Updated by: Dr Tamal Barman	Approved by: Rose McDonald			
Date: July 2022	Date: July 2022			

UNIVERSITY OF PLYMOUTH MODULE RECORD

<u>SECTION A: DEFINITIVE MODULE RECORD</u>. Proposed changes must be submitted via Faculty/AP Quality Procedures for approval and issue of new module code.

MODULE CODE: MARN341		MODULE TITL	MODULE TITLE: Marine Engineering			
CREDITS: 20		FHEQ LEVEL: 6	LEVEL: 6 HECOS CODE: 100194			
PRE-REQUISITES:		CO-REQUISITE	QUISITES:		COMPENSATABLE: N	
SHORT MODULE DESCRIPTOR: (max 425 characters) The module covers Marine Engineering including marine power plant, transmission, system efficiency and environmental factors, and Marine Systems Engineering exploring the aspects of marine engineering dynamic systems, design and analysis.					stem spects of	
ELEMENTS OF ASSESSMENT Assessment	[Use HESA H	<is definitions]="" td="" –<=""><td>see <u>Definit</u></td><td>ons o</td><th><u>f Elements and Comp</u></th><th><u>onents of</u></th></is>	see <u>Definit</u>	ons o	<u>f Elements and Comp</u>	<u>onents of</u>
E1 (Examination)	50%	C1 (Coursewor	<) 50%		P1 (Practical)	
E2 (Clinical Examination)		A1 (Generic assessment)				
T1 (Test)						
SUBJECT ASSESSMENT PANE	L to which i	module should b	e linked: N	IECH/	ł	
Professional body minimum	pass mark	requirement : Av	erage 40%	with ı	no less than 30% in ar	ny element.
 To provide the knowledge and understanding to assess, monitor and improve performance of marine systems taking into account control of transport efficiency, safety and environmental factors in marine transportation. To work effectively in a small group to undertake a design case study in the areas of marine transport efficiency, safety and environmental considerations. To provide knowledge and understanding of modelling and simulation techniques for the design, analysis and control of marine engineering systems. 						e of tal factors in e transport design,
ASSESSED LEARNING OUTCO	OMES: (addit	tional guidance l	elow; plea	se ref	er to the Programme	Specification
At the end of the module the	learner wil	l be expected to	be able to:			
Assessed Module Learning	Outcomes	Awar	d/ Program	me L	earning Outcomes co	ontributed to
 Demonstrate a full under principal components of plant, and their inter-def order to select and desi propulsion and electricat systems. Calculate power output 	erstanding o f marine por ependencies gn appropria al generation , key perform	f the BEng, wer 8.1 SI ate 8.2 E/ N 8.4 El 8.4 El 8.5 P mance G4	/MEng Mar /MEng Mar A1m, EA2, E 2, D4, D5, C .1m, EL2, E L, P5, P6, P2	ine Te n, SM A3m, 6 _3m, 1	echnology 13m . EA4m EL4, EL5m	
parameters and other r order to determine des	elevant crite ign features	and				

_		-
	performance characteristics of marine	
	diesel engines and gas turbines.	
	3. Match an engine to a propeller and design	
	the propeller using open water diagrams.	
	4 Apply modelling and simulation to shair you	
	4. Apply modelling and simulation techniques	
	for the design, analysis and control of	
	marine systems	
	5. Demonstrate effective team working and	
	project management skills in the context of	
	marine systems design, sustainable	
	development/operation, and regulatory	
	frameworks.	
L		
	DATE OF APPROVAL: XX/XX/XXXX	FACULTY/OFFICE: Science & Engineering
	DATE OF IMPLEMENTATION: XX/XX/XXXX	SCHOOL/PARTNER: SECaM
	DATE(S) OF APPROVED CHANGE: XX/XX/XXXX	SEMESTER: Semester 2 (Spring)

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process. <u>Some parts of this page may be used in the KIS return and published on the extranet as a guide for prospective students.</u> Further details for current students should be provided in module guidance notes.

ACADEMIC YEAR: 2022/23	NATIONAL COST CENTRE: 120				
MODULE LEADER: Dr Y M Dai	OTHER MODULE STAFF: Dr S Sharma, Dr J Wan, Dr K Collins				
Summary of Module Content					
Marine power plants: Type and classification.					
Engine and performance characteristics. Power ratings					
Marine diesel engines: Design aspects of marine diesel engines, engine design fundamentals and advanced marine					
applications.					
Marine gas turbines : Thermodynamics and design fundamentals of marine gas turbines					

Propeller Design. Engine/Propeller matching.

Marine engineering systems design:

Marine fuels.

Principles of air conditioning. Design of air conditioning plant. Marine refrigeration, heating, ventilation and air conditioning.

Environmental Factors in Transport.

Marine Engineering Design Case Study.

Analysis of marine dynamic systems and system analysis.

Modelling and simulation of marine mechanical, fluid, electrical and thermal systems using MATLAB with Simulink. Vibration isolation and vibration absorber design.

Hydraulic servo-control systems, controllable pitch propeller systems, Hydraulic power transmission systems. Modelling of complete marine propulsion system to include power plant, transmission, propulsion and hull. Modelling ship steering system. Electrical, electromechanical and electro-hydraulic systems modelling and simulation. Methodical marine system design practices and regulatory frameworks Design project management and effective team working

SUMMARY OF TEACHING AND LEARNING [Use HESA KIS definitions]					
Scheduled Activities	Hours	Comments/Additional Information (briefly explain activities, including			
		formative assessment opportunities)			
Lectures	40				
Practical classes	10				
Seminars/Workshops	6				
Tutorials	12				
Guided independent study	142				
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours, etc.)			

SUMMATIVE ASSESSMENT

Element Category	Component Name	Component Weighting
Written exam	E1 - Exam	100%
Coursework	W1 – Marine Engineering Design Case Study	100%

REFERRAL ASSESSMENT

Element Category	Component Name	Component Weighting
Written exam	Exam	100%
Coursework	Report with additional research	100%

To be completed when presented for Minor Change approval and/or annually updated

Updated by: Dr Y Ming Dai Date: Sept 2021	Approved by: Lance Chatfield	Date: Sept 2021
---	------------------------------	-----------------

UNIVERSITY OF PLYMOUTH MODULE RECORD

<u>SECTION A: DEFINITIVE MODULE RECORD</u>. Proposed changes must be submitted via Faculty/AP Quality Procedures for approval and issue of new module code.

MODULE CODE: MARN342		MODULE T	MODULE TITLE: Naval Architecture 2				
CREDITS: 20		FHEQ LEVE	L: 6		HECOS CODE:	HECOS CODE: 100194	
PRE-REQUISITES: None		CO-REQUIS	O-REQUISITES: None COMPENSATABLE: N				
SHORT MODULE DESCRIPTOR:	SHORT MODULE DESCRIPTOR: (max 425 characters)						
This module places engineering	; principles ir	the context	of a	hull and its fea	tures. The hull ar	nd the structural d	esign
concepts that are particularly a	pplicable to i	marine crafts	are	developed, app	olied and analyse	d. Various types o	f marine
vessels' fitness for purpose are	studied for t	he design driv	vers	used and the c	perational aspec	ts considered.	
ELEMENTS OF ASSESSMENT [U	se HESA KIS o	definitions] – :	see	Definitions of E	lements and Con	nponents of Assess	<u>ment</u>
E1 (Examination)		C1 (Coursev	work)	70%	P1 (Practical)	
E2 (Clinical Examination)		A1 (Generic	asse	essment)			
T1 (Test)	30%						
SUBJECT ASSESSMENT PANEL t	o which mo	dule should b	e lin	ked: MECHA			
Professional body minimum pa	iss mark req	uirement: Ave	erag	e 40% with no	less than 30% in	any element.	
MODULE AIMS:							
To develop an understanding of	the factors a	and the regula	atior	ns which influe	nce the design of	a marine vessel fi	rom
both the engineering and the o	perational as	spects.					
To develop analytical and comp	utational ski	lls on hull des	sign a	and performan	ce analysis.		
To assist students to enhance n	umeracy and	l analytical ski	ills tl	hrough hull str	uctural strength o	calculation.	
ASSESSED LEARNING OUTCOM	ES: (addition	al guidance b	elov	v; please refer	to the Programm	e Specification for	r
relevant award/ programme Le	arning Outco	omes.		-	_	-	
At the end of the module the st	udent will be	e expected to	be a	ble to:			
Assessed Module Learning Outcomes			Aw	/ard/ Program	me Learning Out	comes contribute	d to
1. Analyse and appraise the ge	eneral arrang	gement	BE	ng/MEng Mari	ne Technology		
requirements of a variety of vessel types in order to		8.1	SM3m, SM5m	1			
develop outline arrangement drawings for a vessel to		8.2	EA2, EA3m, E	A4m			
fulfil a given purpose.			8.3	D1, D2, D3m,	D4		
2. Explain, and apply, the princ	ciples associa	ated with	8.4 EL5m				
the analysis of the structural s	trength of th	e hull of a	8.5 P7				
marine vessel.							
3. Assess the implications of v	arious opera	tional and					
regulatory aspects on the desi	gn of a vesse	el and carry	BSc (Hons) Integrated Technologies (Naval Architecture)			ure)	
out a hull survey and preliminary structural analysis.							
4. Use commercial software to assess the		8.1.1.b. 8.2.2.b. 8.2.3.b. 8.3.3. 8.5.3					
performance and behaviour of a vessel at the design		the design		. , , -			
stage and in a seaway.							
DATE OF APPROVAL: XX/XX/XX	XX			FACULTY/OFF	ICE: SciEng		
DATE OF IMPLEMENTATION: XX	(/xx/xxxx			SCHOOL/PAR	TNER: SECaM		

 DATE(S) OF APPROVED CHANGE: XX/XX/XXXX
 SEMESTER: Semester 1 (Autumn)

 Notes:
 Cannot be compensated according to EAB accreditation regulations (see Programme Specification)

section 11)

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process. Some parts of this page may be used in the KIS return and published on the extranet as a guide for prospective students. Further details for current students should be provided in module guidance notes.

ACADEMIC YEAR: 2022/23	NATI ONAL COST CENT RE: 120			
MODULE LEADER:	OTHE			
Dr Jahir Rizvi	R			
	MOD			
	ULE			
	STAFF			
	: Dr			
	Jasper			
	Graha			
	m-Jon			
· · · · ·	es			
Summary of Module				
Content				
Hull Design:				
Evolution and trends in				
Houern null design.				
evaluation of design factors				
and margins.				
Cargo access and				
containment systems				
design.				
Regulatory considerations				
in hull design:				
superstructure				
construction, corrosion and				
its prevention, hull fire and				
safety, general arrangement				
drawings of a given vessel				
type.				
Use of software to ev	valuate			
vessel's performance	e in			
terms of intact stability,				
damage stability, motions				
and resistance.				

Structural Design &	
Analysis:	
Origin and calculation	n of
loads on hull structur	es.
Combined axial and la	ateral
loading on beams and	t
columns.	
Bending, shear and to	orsion
of ship hull girders; be	ending
of stiffened plates and	d
panels.	
In-plane and combine	ed
loading of stiffened p	lates
and panels.	
Regulatory considerat	tions
in hull structural desig	gn for
both the intact and th	ne
damaged conditions.	
Use of software to ev	aluate
vessel's structural stre	ength.
SUMMARY OF TEACH	IING AN
Scheduled	Hours

Scheduled	Hours	Comments/Additional Information (briefly explain activities, including	
Activities		formative assessment opportunities)	
Lectures	42	Standard lectures	
Computer Lab	8	To support lectures (design software)	
Hull Survey	6	To support assignment	
In-class Test	2		
Self-Study	142		
Total	200	(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours, etc.)	

SUMMATIVE ASSESSMENT

Element Category	Component Name	Component Weighting
Test	In-class Test	100%
Coursework	Report	100%

REFERRAL ASSESSMENT

Element Category	Component Name		Component Weighting		
Written exam					
Coursework (in lieu of the	Written Report (in lieu of		100%		
original assessment)	in-class test)				
Coursework	Report		100%		
To be completed when presented for Minor Change approval and/or annually updated					
Updated by: Dr Jahir Rizvi D	Date: Sept 2021 Approv		ed by: Lance Chatfield	Date: Sept 2021	

<u>SECTION A: DEFINITIVE MODULE RECORD</u>. Proposed changes must be submitted via Faculty/AP Quality Procedures for approval and issue of new module code.

MODULE CODE: CONT317	MODULE TITLE: Control and Intelligent Systems Design		
CREDITS: 20	FHEQ LEVEL: 6	HECOS CODE: 100190	

PRE-REQUISITES:		CO-REQUISITES:			COMPENSATABLE: N			
SHORT MODULE DESCRIPTOR: (max 425 characters)								
This module explores the application of control engineering and artificial intelligence techniques in the design								
ot engineering control systems.								
ELEMENTS OF ASSESSMENT [Use HESA KIS definitions] – see <u>Definitions of Elements and Components of Assessment</u>								
E1 (Examination)	70%	C1 (Coursew	vork)	30%	P1 (Practical)			
E2 (Clinical Examination)		A1 (Generic						
		assessment)						
T1 (Test)								
SUBJECT ASSESSMENT PANEL to which module should be linked: MECHA								
Professional body minimum pa	ass mark req	uirement: Av	erage 40%	with no le	ess than 30% in any eleme	ent.		
MODULE AIMS:								
1. To introduce students t	o the analys	is of mechanio	cal, electri	cal and ele	ctronic engineering conti	ol		
configurations, and app	olications.							
2. To develop control system designs based on digital, state space and artificial intelligence approaches.								
3. To apply appropriate mathematic techniques to the evaluation of intelligent control systems design.								
ASSESSED LEARNING OUTCOM	IES: (addition	ial guidance b	pelow; plea	ase refer to	the Programme Specific	ation for		
At the end of the module the st	arning Outco	mes.	ha ahla ta	. .				
Active end of the module the si		e expected to). Drogramm	a Loarning Outcomes cou	atributed to		
Assessed would Learning Outcomes Award/ Programme Learning Outcomes contributed								
1. Analyze digital systems in terms stability, apply difference equations and their significance in digital control system design			Beng/Meng Mechanical Engineering					
			8.1 SM4m					
			8.2 FA1m FA2 FA3m FA4m FA5m FA6m					
2. Transform systems into their state space formats,			8 5 P1					
understand the state transition equation in both its			O.J F I REng Machanical Engineering with Compositor (Lovel 6					
analogue and digital form			Top-Up)					
Calculate the Eigen values and	vectors for	a system	8.2 FA1h FA2 FA3h FA4h					
3. Undertake control system d	lesign using t	he pole	8 5 P1					
placement approach			BEng Manufacturing Engineering (Degree Apprenticeshin)					
4. Apply artificial techniques i	n control sys	tem design.	8.2 EA1b. EA2. EA3b. EA4b					
		8.5 P1						
		BSc (Hons) Integrated Technologies (Autonomous Engineering)						
				8.1.1.c. 8.2.2.c, 8.2.3.c, 8.3.3, 8.5.3				
L			I					

DATE OF APPROVAL: XX/XX/XXXX	FACULTY/OFFICE: SciEng		
DATE OF IMPLEMENTATION: XX/XX/XXXX	SCHOOL; SECaM		
DATE(S) OF APPROVED CHANGE: XX/XX/XXXX	SEMESTER: Semester 2 (Spring)		

Notes:

Cannot be compensated according to EAB accreditation regulations (see Programme Specification section 11)

SECTION B: DETAILS OF TEACHING, LEARNING AND ASSESSMENT

Items in this section must be considered annually and amended as appropriate, in conjunction with the Module Review Process. Some parts of this page may be used in the KIS return and published on the

<u>extranet as a guide for prospective students.</u> Further details for current students should be provided in module guidance notes.

ACADEMIC YEAR: 2022/23	NATION AL COST CENTRE: 120		
MODULE LEADER: Dr Asiya Khan	OTHER MODUL E STAFF: Dr Sanjay Sharma, Dr Jian Wan		
Summary of Module Content Describe digital control system examine methods of sampling conversion from Laplace Tran- to z Transform and vice versa number of methods. Introduct zero order hold and ability to f transfer function. Determine th closed loop pulse transfer fun- using block diagram algebra a Mason's rule. Describe the mapping from s- z-plane and analyze digital sy terms of stability using the Jun- stability criteria. Represent a system in state s format; convert a transfer fund state space and vice versa. Understand and convert into t phase variable form, apply sin- transformation, design a state feedback control system using placement technique. Find the response of state space both continuous and digital form. F controllability and observabilit time linear invariant systems. Calculate the Eigen values an eigenvectors of a control system Understand genetic algorithms, f logic and neural networks and ap	ns; sforms using a ion to ind its ne ction and plane to stems in y pace ction to he nilarity variable g pole e time in ind the y of the d em. fuzzy pply these log bill to the to the to the to the to the to to the to to the to to the to to the to the to to the to to the to to the to the to the to to the to the to the to to the to to the to the to to the to the to to the to the to to the to to the to the to the to to the to to the to to the to to the to the to to the to to the to the to to to to the to to the to the to		
techniques in control design. Calculate the fuzzy implication, composition and defuzzification. Describe and analyse the			

multi-layer perceptron model in neural networks.								
SUMMARY OF TEACHING	AND	LEARNING	Use HESA	NKIS de	efiniti	ions]		
Scheduled Activities Hours			Comments/Additional Information (briefly explain activities, including formative assessment opportunities)					
Lecture 40			2 hour lectures in appropriate weeks					
Tutorial 16		1 hour tutorial in appropriate weeks						
Independent study		144						
Total 200			(NB: 1 credit = 10 hours of learning; 10 credits = 100 hours, etc.)					
SUMMATIVE ASSESSMENT								
Element Category	Com	Component Name			Component Weighting			
Written exam	E1 - E	E1 - Examination			100%			
Coursework	C1 - F	C1 - Report			100%			
REFERRAL ASSESSMENT								
Element Category	C	Component Name				Component Weighting		
Written exam	E	E1 - Examination				100%		
Coursework	C	C1 - Report				100%		
To be completed when presented for Minor Change approval and/or annually updated								
Updated by: Dr Asiya KhanDate: Sept 2021Approved by: Lance ChatfieldDate: Sept 2021								